Spaces:
Runtime error
Runtime error
File size: 12,440 Bytes
8646273 15dbd99 8646273 871cd60 8646273 2ae4679 15dbd99 2ae4679 4ea56e8 8646273 4ea56e8 d4306c7 8646273 d4306c7 8646273 871cd60 d4306c7 871cd60 d4306c7 871cd60 d4306c7 4ea56e8 871cd60 d4306c7 4ea56e8 d4306c7 15dbd99 d4306c7 4ea56e8 15dbd99 4ea56e8 15dbd99 4ea56e8 15dbd99 4ea56e8 15dbd99 4ea56e8 15dbd99 4ea56e8 15dbd99 d4306c7 871cd60 d4306c7 8646273 7fb6670 d4306c7 8646273 d4306c7 8646273 d4306c7 8646273 4ea56e8 8646273 d4306c7 8646273 4ea56e8 d4306c7 8646273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.
import gradio as gr
import numpy as np
import pandas as pd
from phasehunter.model import Onset_picker, Updated_onset_picker
from phasehunter.data_preparation import prepare_waveform
import torch
from scipy.stats import gaussian_kde
import obspy
from obspy.clients.fdsn import Client
from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException
from obspy.geodetics.base import locations2degrees
from obspy.taup import TauPyModel
from obspy.taup.helper_classes import SlownessModelError
from obspy.clients.fdsn.header import URL_MAPPINGS
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from glob import glob
def make_prediction(waveform):
waveform = np.load(waveform)
processed_input = prepare_waveform(waveform)
# Make prediction
with torch.no_grad():
output = model(processed_input)
p_phase = output[:, 0]
s_phase = output[:, 1]
return processed_input, p_phase, s_phase
def mark_phases(waveform):
processed_input, p_phase, s_phase = make_prediction(waveform)
# Create a plot of the waveform with the phases marked
if sum(processed_input[0][2] == 0): #if input is 1C
fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)
ax[0].plot(processed_input[0][0])
ax[0].set_ylabel('Norm. Ampl.')
else: #if input is 3C
fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
ax[0].plot(processed_input[0][0])
ax[1].plot(processed_input[0][1])
ax[2].plot(processed_input[0][2])
ax[0].set_ylabel('Z')
ax[1].set_ylabel('N')
ax[2].set_ylabel('E')
p_phase_plot = p_phase*processed_input.shape[-1]
p_kde = gaussian_kde(p_phase_plot)
p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )
ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')
s_phase_plot = s_phase*processed_input.shape[-1]
s_kde = gaussian_kde(s_phase_plot)
s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )
ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')
for a in ax:
a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P')
a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S')
ax[-1].set_xlabel('Time, samples')
ax[-1].set_ylabel('Uncert.')
ax[-1].legend()
plt.subplots_adjust(hspace=0., wspace=0.)
# Convert the plot to an image and return it
fig.canvas.draw()
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
def variance_coefficient(residuals):
# calculate the variance of the residuals
var = residuals.var()
# scale the variance to a coefficient between 0 and 1
coeff = 1 - (var / (residuals.max() - residuals.min()))
return coeff
def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model):
distances, t0s, st_lats, st_lons, waveforms = [], [], [], [], []
taup_model = TauPyModel(model=velocity_model)
client = Client(client_name)
window = radius_km / 111.2
assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds"
assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds"
starttime = obspy.UTCDateTime(timestamp)
endtime = starttime + 120
inv = client.get_stations(network="*", station="*", location="*", channel="*H*",
starttime=starttime, endtime=endtime,
minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),
minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window),
level='station')
waveforms = []
cached_waveforms = glob("data/cached/*.mseed")
for network in inv:
for station in network:
try:
distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)
arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km,
distance_in_degree=distance,
phase_list=["P", "S"])
if len(arrivals) > 0:
starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15
endtime = starttime + 60
if f"data/cached/{network.code}_{station.code}_{starttime}.mseed" not in cached_waveforms:
waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*",
starttime=starttime, endtime=endtime)
waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED")
else:
waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed")
waveform = waveform.select(channel="H[BH][ZNE]")
waveform = waveform.merge(fill_value=0)
waveform = waveform[:3]
len_check = [len(x.data) for x in waveform]
if len(set(len_check)) > 1:
continue
if len(waveform) == 3:
try:
waveform = prepare_waveform(np.stack([x.data for x in waveform]))
except:
continue
distances.append(distance)
t0s.append(starttime)
st_lats.append(station.latitude)
st_lons.append(station.longitude)
waveforms.append(waveform)
except (IndexError, FDSNNoDataException, FDSNTimeoutException):
continue
with torch.no_grad():
waveforms_torch = torch.vstack(waveforms)
output = model(waveforms_torch)
p_phases = output[:, 0]
s_phases = output[:, 1]
# Max confidence - min variance
p_max_confidence = np.min([p_phases[i::len(waveforms)].std() for i in range(len(waveforms))])
s_max_confidence = np.min([s_phases[i::len(waveforms)].std() for i in range(len(waveforms))])
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 3), sharex=True)
for i in range(len(waveforms)):
current_P = p_phases[i::len(waveforms)]
current_S = s_phases[i::len(waveforms)]
x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]
x = mdates.date2num(x)
# Normalize confidence for the plot
p_conf = 1/(current_P.std()/p_max_confidence).item()
s_conf = 1/(current_S.std()/s_max_confidence).item()
ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)
ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')
ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')
ax[0].set_ylabel('Z')
ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=5))
ax[0].scatter(None, None, color='r', marker='|', label='P')
ax[0].scatter(None, None, color='b', marker='|', label='S')
ax[0].legend()
ax[1].scatter(st_lats, st_lons, color='b', marker='d', label='Stations')
ax[1].scatter(eq_lat, eq_lon, color='r', marker='*', label='Earthquake')
ax[1].legend()
plt.subplots_adjust(hspace=0., wspace=0.)
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
model = Onset_picker.load_from_checkpoint("./weights.ckpt",
picker=Updated_onset_picker(),
learning_rate=3e-4)
model.eval()
with gr.Blocks() as demo:
gr.Markdown("# PhaseHunter")
gr.Markdown("""This app allows one to detect P and S seismic phases along with uncertainty of the detection.
The app can be used in three ways: either by selecting one of the sample waveforms;
or by selecting an earthquake from the global earthquake catalogue;
or by uploading a waveform of interest.
""")
with gr.Tab("Default example"):
# Define the input and output types for Gradio
inputs = gr.Dropdown(
["data/sample/sample_0.npy",
"data/sample/sample_1.npy",
"data/sample/sample_2.npy"],
label="Sample waveform",
info="Select one of the samples",
value = "data/sample/sample_0.npy"
)
button = gr.Button("Predict phases")
outputs = gr.outputs.Image(label='Waveform with Phases Marked', type='numpy')
button.click(mark_phases, inputs=inputs, outputs=outputs)
with gr.Tab("Select earthquake from catalogue"):
gr.Markdown('TEST')
client_inputs = gr.Dropdown(
choices = list(URL_MAPPINGS.keys()),
label="FDSN Client",
info="Select one of the available FDSN clients",
value = "IRIS",
interactive=True
)
with gr.Row():
timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',
placeholder='YYYY-MM-DD HH:MM:SS',
label="Timestamp",
info="Timestamp of the earthquake",
max_lines=1,
interactive=True)
eq_lat_inputs = gr.Number(value=35.766,
label="Latitude",
info="Latitude of the earthquake",
interactive=True)
eq_lon_inputs = gr.Number(value=-117.605,
label="Longitude",
info="Longitude of the earthquake",
interactive=True)
source_depth_inputs = gr.Number(value=10,
label="Source depth (km)",
info="Depth of the earthquake",
interactive=True)
radius_inputs = gr.Slider(minimum=1,
maximum=150,
value=50, label="Radius (km)",
step=10,
info="""Select the radius around the earthquake to download data from.\n
Note that the larger the radius, the longer the app will take to run.""",
interactive=True)
velocity_inputs = gr.Dropdown(
choices = ['1066a', '1066b', 'ak135', 'ak135f', 'herrin', 'iasp91', 'jb', 'prem', 'pwdk'],
label="1D velocity model",
info="Velocity model for station selection",
value = "1066a",
interactive=True
)
button = gr.Button("Predict phases")
outputs_section = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)
button.click(predict_on_section,
inputs=[client_inputs, timestamp_inputs,
eq_lat_inputs, eq_lon_inputs,
radius_inputs, source_depth_inputs, velocity_inputs],
outputs=outputs_section)
with gr.Tab("Predict on your own waveform"):
gr.Markdown("""
Please upload your waveform in .npy (numpy) format.
Your waveform should be sampled at 100 sps and have 3 (Z, N, E) or 1 (Z) channels.
""")
demo.launch() |