File size: 21,088 Bytes
05d0cc5
 
 
 
d59f437
05d0cc5
 
 
d59f437
 
 
 
 
 
 
 
15dbd99
 
 
d59f437
15dbd99
 
 
 
d59f437
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
d59f437
05d0cc5
 
 
 
 
 
 
d59f437
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
d59f437
05d0cc5
 
4ea56e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d0cc5
 
 
 
 
 
 
15dbd99
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15dbd99
05d0cc5
d59f437
 
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59f437
 
 
 
 
 
 
 
 
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59f437
 
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
d59f437
 
 
 
 
 
05d0cc5
 
 
 
 
 
 
 
 
 
15dbd99
 
 
 
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59f437
 
 
 
 
15dbd99
 
 
d59f437
15dbd99
 
 
d59f437
 
 
15dbd99
d59f437
15dbd99
d59f437
 
 
15dbd99
d59f437
 
 
 
 
 
 
 
 
 
 
15dbd99
 
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59f437
 
 
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
d59f437
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59f437
05d0cc5
d59f437
 
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'hi!'"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'hi!'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/anovosel/miniconda3/envs/phasehunter/lib/python3.11/site-packages/gradio/outputs.py:43: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7862\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Error in callback <function _draw_all_if_interactive at 0x1774d0ea0> (for post_execute):\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "File \u001b[0;32m~/miniconda3/envs/phasehunter/lib/python3.11/site-packages/matplotlib/pyplot.py:120\u001b[0m, in \u001b[0;36m_draw_all_if_interactive\u001b[0;34m()\u001b[0m\n\u001b[1;32m    118\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_draw_all_if_interactive\u001b[39m():\n\u001b[1;32m    119\u001b[0m     \u001b[39mif\u001b[39;00m matplotlib\u001b[39m.\u001b[39mis_interactive():\n\u001b[0;32m--> 120\u001b[0m         draw_all()\n",
      "File \u001b[0;32m~/miniconda3/envs/phasehunter/lib/python3.11/site-packages/matplotlib/_pylab_helpers.py:132\u001b[0m, in \u001b[0;36mGcf.draw_all\u001b[0;34m(cls, force)\u001b[0m\n\u001b[1;32m    130\u001b[0m \u001b[39mfor\u001b[39;00m manager \u001b[39min\u001b[39;00m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39mget_all_fig_managers():\n\u001b[1;32m    131\u001b[0m     \u001b[39mif\u001b[39;00m force \u001b[39mor\u001b[39;00m manager\u001b[39m.\u001b[39mcanvas\u001b[39m.\u001b[39mfigure\u001b[39m.\u001b[39mstale:\n\u001b[0;32m--> 132\u001b[0m         manager\u001b[39m.\u001b[39;49mcanvas\u001b[39m.\u001b[39;49mdraw_idle()\n",
      "File \u001b[0;32m~/miniconda3/envs/phasehunter/lib/python3.11/site-packages/matplotlib/backend_bases.py:2082\u001b[0m, in \u001b[0;36mFigureCanvasBase.draw_idle\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   2080\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_is_idle_drawing:\n\u001b[1;32m   2081\u001b[0m     \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_idle_draw_cntx():\n\u001b[0;32m-> 2082\u001b[0m         \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdraw(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
      "File \u001b[0;32m~/miniconda3/envs/phasehunter/lib/python3.11/site-packages/matplotlib/backends/backend_agg.py:397\u001b[0m, in \u001b[0;36mFigureCanvasAgg.draw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    395\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mrenderer\u001b[39m.\u001b[39mclear()\n\u001b[1;32m    396\u001b[0m \u001b[39m# Acquire a lock on the shared font cache.\u001b[39;00m\n\u001b[0;32m--> 397\u001b[0m \u001b[39mwith\u001b[39;49;00m RendererAgg\u001b[39m.\u001b[39;49mlock, \\\n\u001b[1;32m    398\u001b[0m      (\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mtoolbar\u001b[39m.\u001b[39;49m_wait_cursor_for_draw_cm() \u001b[39mif\u001b[39;49;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mtoolbar\n\u001b[1;32m    399\u001b[0m       \u001b[39melse\u001b[39;49;00m nullcontext()):\n\u001b[1;32m    400\u001b[0m     \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mfigure\u001b[39m.\u001b[39;49mdraw(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrenderer)\n\u001b[1;32m    401\u001b[0m     \u001b[39m# A GUI class may be need to update a window using this draw, so\u001b[39;49;00m\n\u001b[1;32m    402\u001b[0m     \u001b[39m# don't forget to call the superclass.\u001b[39;49;00m\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.\n",
    "\n",
    "import gradio as gr\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from phasehunter.model import Onset_picker, Updated_onset_picker\n",
    "from phasehunter.data_preparation import prepare_waveform\n",
    "import torch\n",
    "\n",
    "from scipy.stats import gaussian_kde\n",
    "\n",
    "import obspy\n",
    "from obspy.clients.fdsn import Client\n",
    "from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException\n",
    "from obspy.geodetics.base import locations2degrees\n",
    "from obspy.taup import TauPyModel\n",
    "from obspy.taup.helper_classes import SlownessModelError\n",
    "\n",
    "from obspy.clients.fdsn.header import URL_MAPPINGS\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib.dates as mdates\n",
    "\n",
    "from glob import glob\n",
    "\n",
    "def make_prediction(waveform):\n",
    "    waveform = np.load(waveform)\n",
    "    processed_input = prepare_waveform(waveform)\n",
    "    \n",
    "    # Make prediction\n",
    "    with torch.no_grad():\n",
    "        output = model(processed_input)\n",
    "\n",
    "    p_phase = output[:, 0]\n",
    "    s_phase = output[:, 1]\n",
    "\n",
    "    return processed_input, p_phase, s_phase\n",
    "\n",
    "def mark_phases(waveform):\n",
    "    processed_input, p_phase, s_phase = make_prediction(waveform)\n",
    "\n",
    "    # Create a plot of the waveform with the phases marked\n",
    "    if sum(processed_input[0][2] == 0): #if input is 1C\n",
    "        fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)\n",
    "\n",
    "        ax[0].plot(processed_input[0][0])\n",
    "        ax[0].set_ylabel('Norm. Ampl.')\n",
    "\n",
    "    else: #if input is 3C\n",
    "        fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)\n",
    "        ax[0].plot(processed_input[0][0])\n",
    "        ax[1].plot(processed_input[0][1])\n",
    "        ax[2].plot(processed_input[0][2])\n",
    "\n",
    "        ax[0].set_ylabel('Z')\n",
    "        ax[1].set_ylabel('N')\n",
    "        ax[2].set_ylabel('E')\n",
    "\n",
    "    p_phase_plot = p_phase*processed_input.shape[-1]\n",
    "    p_kde = gaussian_kde(p_phase_plot)\n",
    "    p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )\n",
    "    ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')\n",
    "\n",
    "    s_phase_plot = s_phase*processed_input.shape[-1]\n",
    "    s_kde = gaussian_kde(s_phase_plot)\n",
    "    s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )\n",
    "    ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')\n",
    "\n",
    "    for a in ax:\n",
    "        a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P')\n",
    "        a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S')\n",
    "\n",
    "    ax[-1].set_xlabel('Time, samples')\n",
    "    ax[-1].set_ylabel('Uncert.')\n",
    "    ax[-1].legend()\n",
    "\n",
    "    plt.subplots_adjust(hspace=0., wspace=0.)\n",
    "\n",
    "    # Convert the plot to an image and return it\n",
    "    fig.canvas.draw()\n",
    "    image = np.array(fig.canvas.renderer.buffer_rgba())\n",
    "    plt.close(fig)\n",
    "    return image\n",
    "\n",
    "def variance_coefficient(residuals):\n",
    "    # calculate the variance of the residuals\n",
    "    var = residuals.var()\n",
    "    \n",
    "    # scale the variance to a coefficient between 0 and 1\n",
    "    coeff = 1 - (var / (residuals.max() - residuals.min()))\n",
    "    \n",
    "    return coeff\n",
    "\n",
    "def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model):\n",
    "    distances, t0s, st_lats, st_lons, waveforms = [], [], [], [], []\n",
    "    \n",
    "    taup_model = TauPyModel(model=velocity_model)\n",
    "    client = Client(client_name)\n",
    "\n",
    "    window = radius_km / 111.2\n",
    "\n",
    "    assert eq_lat - window > -90 and eq_lat + window < 90, \"Latitude out of bounds\"\n",
    "    assert eq_lon - window > -180 and eq_lon + window < 180, \"Longitude out of bounds\"\n",
    "\n",
    "    starttime = obspy.UTCDateTime(timestamp)\n",
    "    endtime = starttime + 120\n",
    "\n",
    "    inv = client.get_stations(network=\"*\", station=\"*\", location=\"*\", channel=\"*H*\", \n",
    "                          starttime=starttime, endtime=endtime, \n",
    "                          minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),\n",
    "                          minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window), \n",
    "                          level='station')\n",
    "    \n",
    "    waveforms = []\n",
    "    cached_waveforms = glob(\"data/cached/*.mseed\")\n",
    "\n",
    "    for network in inv:\n",
    "        for station in network:\n",
    "            try:\n",
    "                distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)\n",
    "\n",
    "                arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km, \n",
    "                                                       distance_in_degree=distance, \n",
    "                                                       phase_list=[\"P\", \"S\"])\n",
    "\n",
    "                if len(arrivals) > 0:\n",
    "\n",
    "                    starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15\n",
    "                    endtime = starttime + 60\n",
    "\n",
    "                    if f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\" not in cached_waveforms:\n",
    "                        waveform = client.get_waveforms(network=network.code, station=station.code, location=\"*\", channel=\"*\", \n",
    "                                                    starttime=starttime, endtime=endtime)\n",
    "                        waveform.write(f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\", format=\"MSEED\")\n",
    "                    else:\n",
    "                        waveform = obspy.read(f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\")\n",
    "                    \n",
    "                    waveform = waveform.select(channel=\"H[BH][ZNE]\")\n",
    "                    waveform = waveform.merge(fill_value=0)\n",
    "                    waveform = waveform[:3]\n",
    "                    \n",
    "                    len_check = [len(x.data) for x in waveform]\n",
    "                    if len(set(len_check)) > 1:\n",
    "                        continue\n",
    "\n",
    "                    if len(waveform) == 3:\n",
    "                        try:\n",
    "                            waveform = prepare_waveform(np.stack([x.data for x in waveform]))\n",
    "                        except:\n",
    "                            continue\n",
    "                    \n",
    "                        distances.append(distance)\n",
    "                        t0s.append(starttime)\n",
    "                        st_lats.append(station.latitude)\n",
    "                        st_lons.append(station.longitude)\n",
    "                        waveforms.append(waveform)\n",
    "\n",
    "            except (IndexError, FDSNNoDataException, FDSNTimeoutException):\n",
    "                continue\n",
    "\n",
    "    with torch.no_grad():\n",
    "        waveforms_torch = torch.vstack(waveforms)\n",
    "        output = model(waveforms_torch)\n",
    "\n",
    "    p_phases = output[:, 0]\n",
    "    s_phases = output[:, 1]\n",
    "\n",
    "    # Max confidence - min variance     \n",
    "    p_max_confidence = np.min([p_phases[i::len(waveforms)].std() for i in range(len(waveforms))]) \n",
    "    s_max_confidence = np.min([s_phases[i::len(waveforms)].std() for i in range(len(waveforms))])\n",
    "\n",
    "    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 3), sharex=True)\n",
    "    for i in range(len(waveforms)):\n",
    "        current_P = p_phases[i::len(waveforms)]\n",
    "        current_S = s_phases[i::len(waveforms)]\n",
    "\n",
    "        x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]\n",
    "        x = mdates.date2num(x)\n",
    "\n",
    "        # Normalize confidence for the plot\n",
    "        p_conf = 1/(current_P.std()/p_max_confidence).item()\n",
    "        s_conf = 1/(current_S.std()/s_max_confidence).item()\n",
    "\n",
    "        ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)\n",
    "\n",
    "        ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')\n",
    "        ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')\n",
    "        ax[0].set_ylabel('Z')\n",
    "\n",
    "        ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))\n",
    "        ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=5))\n",
    "        \n",
    "    ax[0].scatter(None, None, color='r', marker='|', label='P')\n",
    "    ax[0].scatter(None, None, color='b', marker='|', label='S')\n",
    "    ax[0].legend()\n",
    "\n",
    "    ax[1].scatter(st_lats, st_lons, color='b', marker='d', label='Stations')\n",
    "    ax[1].scatter(eq_lat, eq_lon, color='r', marker='*', label='Earthquake')\n",
    "    ax[1].legend()\n",
    "    plt.subplots_adjust(hspace=0., wspace=0.)\n",
    "        \n",
    "    fig.canvas.draw();\n",
    "    image = np.array(fig.canvas.renderer.buffer_rgba())\n",
    "    plt.close(fig)\n",
    "\n",
    "    return image\n",
    "\n",
    "\n",
    "model = Onset_picker.load_from_checkpoint(\"./weights.ckpt\",\n",
    "                                 picker=Updated_onset_picker(),\n",
    "                                    learning_rate=3e-4)\n",
    "model.eval()\n",
    "\n",
    "with gr.Blocks() as demo:\n",
    "    gr.Markdown(\"# PhaseHunter\")\n",
    "    gr.Markdown(\"\"\"This app allows one to detect P and S seismic phases along with uncertainty of the detection. \n",
    "            The app can be used in three ways: either by selecting one of the sample waveforms;\n",
    "                                                or by selecting an earthquake from the global earthquake catalogue;\n",
    "                                                or by uploading a waveform of interest.\n",
    "            \"\"\")\n",
    "    with gr.Tab(\"Default example\"):\n",
    "        # Define the input and output types for Gradio\n",
    "        inputs = gr.Dropdown(\n",
    "            [\"data/sample/sample_0.npy\", \n",
    "            \"data/sample/sample_1.npy\", \n",
    "            \"data/sample/sample_2.npy\"], \n",
    "            label=\"Sample waveform\", \n",
    "            info=\"Select one of the samples\",\n",
    "            value = \"data/sample/sample_0.npy\"\n",
    "        )\n",
    "\n",
    "        button = gr.Button(\"Predict phases\")\n",
    "        outputs = gr.outputs.Image(label='Waveform with Phases Marked', type='numpy')\n",
    "    \n",
    "        button.click(mark_phases, inputs=inputs, outputs=outputs)\n",
    "        \n",
    "    with gr.Tab(\"Select earthquake from catalogue\"):\n",
    "        gr.Markdown('TEST')\n",
    "        \n",
    "        client_inputs = gr.Dropdown(\n",
    "            choices = list(URL_MAPPINGS.keys()), \n",
    "            label=\"FDSN Client\", \n",
    "            info=\"Select one of the available FDSN clients\",\n",
    "            value = \"IRIS\",\n",
    "            interactive=True\n",
    "        )\n",
    "        with gr.Row(): \n",
    "\n",
    "            timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',\n",
    "                                placeholder='YYYY-MM-DD HH:MM:SS',\n",
    "                                label=\"Timestamp\",\n",
    "                                info=\"Timestamp of the earthquake\",\n",
    "                                max_lines=1,\n",
    "                                interactive=True)\n",
    "                               \n",
    "            eq_lat_inputs = gr.Number(value=35.766, \n",
    "                            label=\"Latitude\", \n",
    "                            info=\"Latitude of the earthquake\",\n",
    "                            interactive=True)\n",
    "            \n",
    "            eq_lon_inputs = gr.Number(value=-117.605,\n",
    "                                label=\"Longitude\",\n",
    "                                info=\"Longitude of the earthquake\",\n",
    "                                interactive=True)\n",
    "            \n",
    "            source_depth_inputs = gr.Number(value=10,\n",
    "                                label=\"Source depth (km)\",\n",
    "                                info=\"Depth of the earthquake\",\n",
    "                                interactive=True)\n",
    "            \n",
    "            radius_inputs = gr.Slider(minimum=1, \n",
    "                                    maximum=150, \n",
    "                                    value=50, label=\"Radius (km)\", \n",
    "                                    step=10,\n",
    "                                    info=\"\"\"Select the radius around the earthquake to download data from.\\n \n",
    "                                    Note that the larger the radius, the longer the app will take to run.\"\"\",\n",
    "                                    interactive=True)\n",
    "            \n",
    "            velocity_inputs = gr.Dropdown(\n",
    "                choices = ['1066a', '1066b', 'ak135', 'ak135f', 'herrin', 'iasp91', 'jb', 'prem', 'pwdk'], \n",
    "                label=\"1D velocity model\", \n",
    "                info=\"Velocity model for station selection\",\n",
    "                value = \"1066a\",\n",
    "                interactive=True\n",
    "            )\n",
    "            \n",
    "            \n",
    "        button = gr.Button(\"Predict phases\")\n",
    "        outputs_section = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)\n",
    "        \n",
    "        button.click(predict_on_section, \n",
    "                 inputs=[client_inputs, timestamp_inputs, \n",
    "                         eq_lat_inputs, eq_lon_inputs, \n",
    "                         radius_inputs, source_depth_inputs, velocity_inputs],\n",
    "                 outputs=outputs_section)\n",
    "\n",
    "    with gr.Tab(\"Predict on your own waveform\"):\n",
    "        gr.Markdown(\"\"\"\n",
    "        Please upload your waveform in .npy (numpy) format. \n",
    "        Your waveform should be sampled at 100 sps and have 3 (Z, N, E) or 1 (Z) channels.\n",
    "        \"\"\")\n",
    "\n",
    "demo.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "phasehunter",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "6bf57068982d7b420bddaaf1d0614a7795947176033057024cf47d8ca2c1c4cd"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}