Spaces:
Running
on
Zero
Running
on
Zero
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import os | |
# import ipdb | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import pytorch_lightning as pl | |
from tqdm import tqdm | |
from torchvision.transforms import v2 | |
from torchvision.utils import make_grid, save_image | |
from einops import rearrange | |
from diffusers import ( | |
DiffusionPipeline, | |
EulerAncestralDiscreteScheduler, | |
DDPMScheduler, | |
UNet2DConditionModel, | |
ControlNetModel, | |
) | |
from .modules import Dino_v2, UNet2p5DConditionModel | |
import math | |
def extract_into_tensor(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
class HunyuanPaint(pl.LightningModule): | |
def __init__( | |
self, | |
stable_diffusion_config, | |
control_net_config=None, | |
num_view=6, | |
view_size=320, | |
drop_cond_prob=0.1, | |
with_normal_map=None, | |
with_position_map=None, | |
pbr_settings=["albedo", "mr"], | |
**kwargs, | |
): | |
"""Initializes the HunyuanPaint Lightning Module. | |
Args: | |
stable_diffusion_config: Configuration for loading the Stable Diffusion pipeline | |
control_net_config: Configuration for ControlNet (optional) | |
num_view: Number of views to process | |
view_size: Size of input views (height/width) | |
drop_cond_prob: Probability of dropping conditioning input during training | |
with_normal_map: Flag indicating whether normal maps are used | |
with_position_map: Flag indicating whether position maps are used | |
pbr_settings: List of PBR materials to generate (e.g., albedo, metallic-roughness) | |
**kwargs: Additional keyword arguments | |
""" | |
super(HunyuanPaint, self).__init__() | |
self.num_view = num_view | |
self.view_size = view_size | |
self.drop_cond_prob = drop_cond_prob | |
self.pbr_settings = pbr_settings | |
# init modules | |
pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config) | |
pipeline.set_pbr_settings(self.pbr_settings) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing="trailing" | |
) | |
self.with_normal_map = with_normal_map | |
self.with_position_map = with_position_map | |
self.pipeline = pipeline | |
self.pipeline.vae.use_slicing = True | |
train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config) | |
if isinstance(self.pipeline.unet, UNet2DConditionModel): | |
self.pipeline.unet = UNet2p5DConditionModel( | |
self.pipeline.unet, train_sched, self.pipeline.scheduler, self.pbr_settings | |
) | |
self.train_scheduler = train_sched # use ddpm scheduler during training | |
self.register_schedule() | |
pipeline.set_learned_parameters() | |
if control_net_config is not None: | |
pipeline.unet = pipeline.unet.bfloat16().requires_grad_(control_net_config.train_unet) | |
self.pipeline.add_controlnet( | |
ControlNetModel.from_pretrained(control_net_config.pretrained_model_name_or_path), | |
conditioning_scale=0.75, | |
) | |
self.unet = pipeline.unet | |
self.pipeline.set_progress_bar_config(disable=True) | |
self.pipeline.vae = self.pipeline.vae.bfloat16() | |
self.pipeline.text_encoder = self.pipeline.text_encoder.bfloat16() | |
if self.unet.use_dino: | |
self.dino_v2 = Dino_v2("facebook/dinov2-giant") | |
self.dino_v2 = self.dino_v2.bfloat16() | |
self.validation_step_outputs = [] | |
def register_schedule(self): | |
self.num_timesteps = self.train_scheduler.config.num_train_timesteps | |
betas = self.train_scheduler.betas.detach().cpu() | |
alphas = 1.0 - betas | |
alphas_cumprod = torch.cumprod(alphas, dim=0) | |
alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0) | |
self.register_buffer("betas", betas.float()) | |
self.register_buffer("alphas_cumprod", alphas_cumprod.float()) | |
self.register_buffer("alphas_cumprod_prev", alphas_cumprod_prev.float()) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float()) | |
self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float()) | |
self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod).float()) | |
self.register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1).float()) | |
def on_fit_start(self): | |
device = torch.device(f"cuda:{self.local_rank}") | |
self.pipeline.to(device) | |
if self.global_rank == 0: | |
os.makedirs(os.path.join(self.logdir, "images_val"), exist_ok=True) | |
def prepare_batch_data(self, batch): | |
"""Preprocesses a batch of input data for training/inference. | |
Args: | |
batch: Raw input batch dictionary | |
Returns: | |
tuple: Contains: | |
- cond_imgs: Primary conditioning images (B, 1, C, H, W) | |
- cond_imgs_another: Secondary conditioning images (B, 1, C, H, W) | |
- target_imgs: Dictionary of target PBR images resized and clamped | |
- images_normal: Preprocessed normal maps (if available) | |
- images_position: Preprocessed position maps (if available) | |
""" | |
images_cond = batch["images_cond"].to(self.device) # (B, M, C, H, W), where M is the number of reference images | |
cond_imgs, cond_imgs_another = images_cond[:, 0:1, ...], images_cond[:, 1:2, ...] | |
cond_size = self.view_size | |
cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1) | |
cond_imgs_another = v2.functional.resize(cond_imgs_another, cond_size, interpolation=3, antialias=True).clamp( | |
0, 1 | |
) | |
target_imgs = {} | |
for pbr_token in self.pbr_settings: | |
target_imgs[pbr_token] = batch[f"images_{pbr_token}"].to(self.device) | |
target_imgs[pbr_token] = v2.functional.resize( | |
target_imgs[pbr_token], self.view_size, interpolation=3, antialias=True | |
).clamp(0, 1) | |
images_normal = None | |
if "images_normal" in batch: | |
images_normal = batch["images_normal"] # (B, N, C, H, W) | |
images_normal = v2.functional.resize(images_normal, self.view_size, interpolation=3, antialias=True).clamp( | |
0, 1 | |
) | |
images_normal = [images_normal] | |
images_position = None | |
if "images_position" in batch: | |
images_position = batch["images_position"] # (B, N, C, H, W) | |
images_position = v2.functional.resize( | |
images_position, self.view_size, interpolation=3, antialias=True | |
).clamp(0, 1) | |
images_position = [images_position] | |
return cond_imgs, cond_imgs_another, target_imgs, images_normal, images_position | |
def forward_text_encoder(self, prompts): | |
device = next(self.pipeline.vae.parameters()).device | |
text_embeds = self.pipeline.encode_prompt(prompts, device, 1, False)[0] | |
return text_embeds | |
def encode_images(self, images): | |
"""Encodes input images into latent representations using the VAE. | |
Handles both standard input (B, N, C, H, W) and PBR input (B, N_pbrs, N, C, H, W) | |
Maintains original batch structure in output latents. | |
Args: | |
images: Input images tensor | |
Returns: | |
torch.Tensor: Latent representations with original batch dimensions preserved | |
""" | |
B = images.shape[0] | |
image_ndims = images.ndim | |
if image_ndims != 5: | |
N_pbrs, N = images.shape[1:3] | |
images = ( | |
rearrange(images, "b n c h w -> (b n) c h w") | |
if image_ndims == 5 | |
else rearrange(images, "b n_pbrs n c h w -> (b n_pbrs n) c h w") | |
) | |
dtype = next(self.pipeline.vae.parameters()).dtype | |
images = (images - 0.5) * 2.0 | |
posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist | |
latents = posterior.sample() * self.pipeline.vae.config.scaling_factor | |
latents = ( | |
rearrange(latents, "(b n) c h w -> b n c h w", b=B) | |
if image_ndims == 5 | |
else rearrange(latents, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs) | |
) | |
return latents | |
def forward_unet(self, latents, t, **cached_condition): | |
"""Runs the UNet model to predict noise/latent residuals. | |
Args: | |
latents: Noisy latent representations (B, C, H, W) | |
t: Timestep tensor (B,) | |
**cached_condition: Dictionary of conditioning inputs (text embeds, reference images, etc) | |
Returns: | |
torch.Tensor: UNet output (predicted noise or velocity) | |
""" | |
dtype = next(self.unet.parameters()).dtype | |
latents = latents.to(dtype) | |
shading_embeds = cached_condition["shading_embeds"] | |
pred_noise = self.pipeline.unet(latents, t, encoder_hidden_states=shading_embeds, **cached_condition) | |
return pred_noise[0] | |
def predict_start_from_z_and_v(self, x_t, t, v): | |
""" | |
Predicts clean image (x0) from noisy latents (x_t) and | |
velocity prediction (v) using the v-prediction formula. | |
Args: | |
x_t: Noisy latents at timestep t | |
t: Current timestep | |
v: Predicted velocity (v) from UNet | |
Returns: | |
torch.Tensor: Predicted clean image (x0) | |
""" | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t | |
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v | |
) | |
def get_v(self, x, noise, t): | |
"""Computes the target velocity (v) for v-prediction training. | |
Args: | |
x: Clean latents (x0) | |
noise: Added noise | |
t: Current timestep | |
Returns: | |
torch.Tensor: Target velocity | |
""" | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise | |
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x | |
) | |
def training_step(self, batch, batch_idx): | |
"""Performs a single training step with both conditioning paths. | |
Implements: | |
1. Dual-conditioning path training (main ref + secondary ref) | |
2. Velocity-prediction with consistency loss | |
3. Conditional dropout for robust learning | |
4. PBR-specific losses (albedo/metallic-roughness) | |
Args: | |
batch: Input batch from dataloader | |
batch_idx: Index of current batch | |
Returns: | |
torch.Tensor: Combined loss value | |
""" | |
cond_imgs, cond_imgs_another, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch) | |
B, N_ref = cond_imgs.shape[:2] | |
_, N_gen, _, H, W = target_imgs["albedo"].shape | |
N_pbrs = len(self.pbr_settings) | |
t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device) | |
t = t.unsqueeze(-1).repeat(1, N_pbrs, N_gen) | |
t = rearrange(t, "b n_pbrs n -> (b n_pbrs n)") | |
all_target_pbrs = [] | |
for pbr_token in self.pbr_settings: | |
all_target_pbrs.append(target_imgs[pbr_token]) | |
all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0) | |
gen_latents = self.encode_images(all_target_pbrs) #! B, N_pbrs N C H W | |
ref_latents = self.encode_images(cond_imgs) #! B, M, C, H, W | |
ref_latents_another = self.encode_images(cond_imgs_another) #! B, M, C, H, W | |
all_shading_tokens = [] | |
for token in self.pbr_settings: | |
if token in ["albedo", "mr"]: | |
all_shading_tokens.append( | |
getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(B, 1, 1) | |
) | |
shading_embeds = torch.stack(all_shading_tokens, dim=1) | |
if self.unet.use_dino: | |
dino_hidden_states = self.dino_v2(cond_imgs[:, :1, ...]) | |
dino_hidden_states_another = self.dino_v2(cond_imgs_another[:, :1, ...]) | |
gen_latents = rearrange(gen_latents, "b n_pbrs n c h w -> (b n_pbrs n) c h w") | |
noise = torch.randn_like(gen_latents).to(self.device) | |
latents_noisy = self.train_scheduler.add_noise(gen_latents, noise, t).to(self.device) | |
latents_noisy = rearrange(latents_noisy, "(b n_pbrs n) c h w -> b n_pbrs n c h w", b=B, n_pbrs=N_pbrs) | |
cached_condition = {} | |
if normal_imgs is not None: | |
normal_embeds = self.encode_images(normal_imgs[0]) | |
cached_condition["embeds_normal"] = normal_embeds #! B, N, C, H, W | |
if position_imgs is not None: | |
position_embeds = self.encode_images(position_imgs[0]) | |
cached_condition["embeds_position"] = position_embeds #! B, N, C, H, W | |
cached_condition["position_maps"] = position_imgs[0] #! B, N, C, H, W | |
for b in range(B): | |
prob = np.random.rand() | |
if prob < self.drop_cond_prob: | |
if "normal_imgs" in cached_condition: | |
cached_condition["embeds_normal"][b, ...] = torch.zeros_like( | |
cached_condition["embeds_normal"][b, ...] | |
) | |
if "position_imgs" in cached_condition: | |
cached_condition["embeds_position"][b, ...] = torch.zeros_like( | |
cached_condition["embeds_position"][b, ...] | |
) | |
prob = np.random.rand() | |
if prob < self.drop_cond_prob: | |
if "position_maps" in cached_condition: | |
cached_condition["position_maps"][b, ...] = torch.zeros_like( | |
cached_condition["position_maps"][b, ...] | |
) | |
prob = np.random.rand() | |
if prob < self.drop_cond_prob: | |
dino_hidden_states[b, ...] = torch.zeros_like(dino_hidden_states[b, ...]) | |
prob = np.random.rand() | |
if prob < self.drop_cond_prob: | |
dino_hidden_states_another[b, ...] = torch.zeros_like(dino_hidden_states_another[b, ...]) | |
# MVA & Ref Attention | |
prob = np.random.rand() | |
cached_condition["mva_scale"] = 1.0 | |
cached_condition["ref_scale"] = 1.0 | |
if prob < self.drop_cond_prob: | |
cached_condition["mva_scale"] = 0.0 | |
cached_condition["ref_scale"] = 0.0 | |
elif prob > 1.0 - self.drop_cond_prob: | |
prob = np.random.rand() | |
if prob < 0.5: | |
cached_condition["mva_scale"] = 0.0 | |
else: | |
cached_condition["ref_scale"] = 0.0 | |
else: | |
pass | |
if self.train_scheduler.config.prediction_type == "v_prediction": | |
cached_condition["shading_embeds"] = shading_embeds | |
cached_condition["ref_latents"] = ref_latents | |
cached_condition["dino_hidden_states"] = dino_hidden_states | |
v_pred = self.forward_unet(latents_noisy, t, **cached_condition) | |
v_pred_albedo, v_pred_mr = torch.split( | |
rearrange( | |
v_pred, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view | |
), | |
1, | |
dim=1, | |
) | |
v_target = self.get_v(gen_latents, noise, t) | |
v_target_albedo, v_target_mr = torch.split( | |
rearrange( | |
v_target, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view | |
), | |
1, | |
dim=1, | |
) | |
albedo_loss_1, _ = self.compute_loss(v_pred_albedo, v_target_albedo) | |
mr_loss_1, _ = self.compute_loss(v_pred_mr, v_target_mr) | |
cached_condition["ref_latents"] = ref_latents_another | |
cached_condition["dino_hidden_states"] = dino_hidden_states_another | |
v_pred_another = self.forward_unet(latents_noisy, t, **cached_condition) | |
v_pred_another_albedo, v_pred_another_mr = torch.split( | |
rearrange( | |
v_pred_another, | |
"(b n_pbr n) c h w -> b n_pbr n c h w", | |
n_pbr=len(self.pbr_settings), | |
n=self.num_view, | |
), | |
1, | |
dim=1, | |
) | |
albedo_loss_2, _ = self.compute_loss(v_pred_another_albedo, v_target_albedo) | |
mr_loss_2, _ = self.compute_loss(v_pred_another_mr, v_target_mr) | |
consistency_loss, _ = self.compute_loss(v_pred_another, v_pred) | |
albedo_loss = (albedo_loss_1 + albedo_loss_2) * 0.5 | |
mr_loss = (mr_loss_1 + mr_loss_2) * 0.5 | |
log_loss_dict = {} | |
log_loss_dict.update({f"train/albedo_loss": albedo_loss}) | |
log_loss_dict.update({f"train/mr_loss": mr_loss}) | |
log_loss_dict.update({f"train/cons_loss": consistency_loss}) | |
loss_dict = log_loss_dict | |
elif self.train_scheduler.config.prediction_type == "epsilon": | |
e_pred = self.forward_unet(latents_noisy, t, **cached_condition) | |
loss, loss_dict = self.compute_loss(e_pred, noise) | |
else: | |
raise f"No {self.train_scheduler.config.prediction_type}" | |
# logging | |
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
lr = self.optimizers().param_groups[0]["lr"] | |
self.log("lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
return 0.85 * (albedo_loss + mr_loss) + 0.15 * consistency_loss | |
def compute_loss(self, noise_pred, noise_gt): | |
loss = F.mse_loss(noise_pred, noise_gt) | |
prefix = "train" | |
loss_dict = {} | |
loss_dict.update({f"{prefix}/loss": loss}) | |
return loss, loss_dict | |
def validation_step(self, batch, batch_idx): | |
"""Performs validation on a single batch. | |
Generates predicted images using: | |
1. Reference conditioning images | |
2. Optional normal/position maps | |
3. Frozen DINO features (if enabled) | |
4. Text prompt conditioning | |
Compares predictions against ground truth targets and prepares visualization. | |
Stores results for epoch-level aggregation. | |
Args: | |
batch: Input batch from validation dataloader | |
batch_idx: Index of current batch | |
""" | |
# [Validation image generation and comparison logic...] | |
# Key steps: | |
# 1. Preprocess conditioning images to PIL format | |
# 2. Set up conditioning inputs (normal maps, position maps, DINO features) | |
# 3. Run pipeline inference with fixed prompt ("high quality") | |
# 4. Decode latent outputs to image space | |
# 5. Arrange predictions and ground truths for visualization | |
cond_imgs_tensor, _, target_imgs, normal_imgs, position_imgs = self.prepare_batch_data(batch) | |
resolution = self.view_size | |
image_pils = [] | |
for i in range(cond_imgs_tensor.shape[0]): | |
image_pils.append([]) | |
for j in range(cond_imgs_tensor.shape[1]): | |
image_pils[-1].append(v2.functional.to_pil_image(cond_imgs_tensor[i, j, ...])) | |
outputs, gts = [], [] | |
for idx in range(len(image_pils)): | |
cond_imgs = image_pils[idx] | |
cached_condition = dict(num_in_batch=self.num_view, N_pbrs=len(self.pbr_settings)) | |
if normal_imgs is not None: | |
cached_condition["images_normal"] = normal_imgs[0][idx, ...].unsqueeze(0) | |
if position_imgs is not None: | |
cached_condition["images_position"] = position_imgs[0][idx, ...].unsqueeze(0) | |
if self.pipeline.unet.use_dino: | |
dino_hidden_states = self.dino_v2([cond_imgs][0]) | |
cached_condition["dino_hidden_states"] = dino_hidden_states | |
latent = self.pipeline( | |
cond_imgs, | |
prompt="high quality", | |
num_inference_steps=30, | |
output_type="latent", | |
height=resolution, | |
width=resolution, | |
**cached_condition, | |
).images | |
image = self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[ | |
0 | |
] # [-1, 1] | |
image = (image * 0.5 + 0.5).clamp(0, 1) | |
image = rearrange( | |
image, "(b n_pbr n) c h w -> b n_pbr n c h w", n_pbr=len(self.pbr_settings), n=self.num_view | |
) | |
image = torch.cat((torch.ones_like(image[:, :, :1, ...]) * 0.5, image), dim=2) | |
image = rearrange(image, "b n_pbr n c h w -> (b n_pbr n) c h w") | |
image = rearrange( | |
image, | |
"(b n_pbr n) c h w -> b c (n_pbr h) (n w)", | |
b=1, | |
n_pbr=len(self.pbr_settings), | |
n=self.num_view + 1, | |
) | |
outputs.append(image) | |
all_target_pbrs = [] | |
for pbr_token in self.pbr_settings: | |
all_target_pbrs.append(target_imgs[pbr_token]) | |
all_target_pbrs = torch.stack(all_target_pbrs, dim=0).transpose(1, 0) | |
all_target_pbrs = torch.cat( | |
(cond_imgs_tensor.unsqueeze(1).repeat(1, len(self.pbr_settings), 1, 1, 1, 1), all_target_pbrs), dim=2 | |
) | |
all_target_pbrs = rearrange(all_target_pbrs, "b n_pbrs n c h w -> b c (n_pbrs h) (n w)") | |
gts = all_target_pbrs | |
outputs = torch.cat(outputs, dim=0).to(self.device) | |
images = torch.cat([gts, outputs], dim=-2) | |
self.validation_step_outputs.append(images) | |
def on_validation_epoch_end(self): | |
"""Aggregates validation results at epoch end. | |
Gathers outputs from all GPUs (if distributed training), | |
creates a unified visualization grid, and saves to disk. | |
Only rank 0 process performs saving. | |
""" | |
# [Result aggregation and visualization...] | |
# Key steps: | |
# 1. Gather validation outputs from all processes | |
# 2. Create image grid combining ground truths and predictions | |
# 3. Save visualization with step-numbered filename | |
# 4. Clear memory for next validation cycle | |
images = torch.cat(self.validation_step_outputs, dim=0) | |
all_images = self.all_gather(images) | |
all_images = rearrange(all_images, "r b c h w -> (r b) c h w") | |
if self.global_rank == 0: | |
grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1)) | |
save_image(grid, os.path.join(self.logdir, "images_val", f"val_{self.global_step:07d}.png")) | |
self.validation_step_outputs.clear() # free memory | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr) | |
def lr_lambda(step): | |
warm_up_step = 1000 | |
T_step = 9000 | |
gamma = 0.9 | |
min_lr = 0.1 if step >= warm_up_step else 0.0 | |
max_lr = 1.0 | |
normalized_step = step % (warm_up_step + T_step) | |
current_max_lr = max_lr * gamma ** (step // (warm_up_step + T_step)) | |
if current_max_lr < min_lr: | |
current_max_lr = min_lr | |
if normalized_step < warm_up_step: | |
lr_step = min_lr + (normalized_step / warm_up_step) * (current_max_lr - min_lr) | |
else: | |
step_wc_wp = normalized_step - warm_up_step | |
ratio = step_wc_wp / T_step | |
lr_step = min_lr + 0.5 * (current_max_lr - min_lr) * (1 + math.cos(math.pi * ratio)) | |
return lr_step | |
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda) | |
lr_scheduler_config = { | |
"scheduler": lr_scheduler, | |
"interval": "step", | |
"frequency": 1, | |
"monitor": "val_loss", | |
"strict": False, | |
"name": None, | |
} | |
return {"optimizer": optimizer, "lr_scheduler": lr_scheduler_config} | |