Jannis Wienert
try out with a model
d5dce88
import os
import re
from typing import Optional
# Possible values for env variables
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
def _is_true(value: Optional[str]) -> bool:
if value is None:
return False
return value.upper() in ENV_VARS_TRUE_VALUES
def _as_int(value: Optional[str]) -> Optional[int]:
if value is None:
return None
return int(value)
# Constants for file downloads
PYTORCH_WEIGHTS_NAME = "pytorch_model.bin"
TF2_WEIGHTS_NAME = "tf_model.h5"
TF_WEIGHTS_NAME = "model.ckpt"
FLAX_WEIGHTS_NAME = "flax_model.msgpack"
CONFIG_NAME = "config.json"
REPOCARD_NAME = "README.md"
# Git-related constants
DEFAULT_REVISION = "main"
REGEX_COMMIT_OID = re.compile(r"[A-Fa-f0-9]{5,40}")
HUGGINGFACE_CO_URL_HOME = "https://huggingface.co/"
_staging_mode = _is_true(os.environ.get("HUGGINGFACE_CO_STAGING"))
ENDPOINT = os.getenv("HF_ENDPOINT") or ("https://hub-ci.huggingface.co" if _staging_mode else "https://huggingface.co")
HUGGINGFACE_CO_URL_TEMPLATE = ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}"
HUGGINGFACE_HEADER_X_REPO_COMMIT = "X-Repo-Commit"
HUGGINGFACE_HEADER_X_LINKED_ETAG = "X-Linked-Etag"
HUGGINGFACE_HEADER_X_LINKED_SIZE = "X-Linked-Size"
INFERENCE_ENDPOINT = os.environ.get("HF_INFERENCE_ENDPOINT", "https://api-inference.huggingface.co")
REPO_ID_SEPARATOR = "--"
# ^ this substring is not allowed in repo_ids on hf.co
# and is the canonical one we use for serialization of repo ids elsewhere.
REPO_TYPE_DATASET = "dataset"
REPO_TYPE_SPACE = "space"
REPO_TYPE_MODEL = "model"
REPO_TYPES = [None, REPO_TYPE_MODEL, REPO_TYPE_DATASET, REPO_TYPE_SPACE]
SPACES_SDK_TYPES = ["gradio", "streamlit", "docker", "static"]
REPO_TYPES_URL_PREFIXES = {
REPO_TYPE_DATASET: "datasets/",
REPO_TYPE_SPACE: "spaces/",
}
REPO_TYPES_MAPPING = {
"datasets": REPO_TYPE_DATASET,
"spaces": REPO_TYPE_SPACE,
"models": REPO_TYPE_MODEL,
}
# default cache
default_home = os.path.join(os.path.expanduser("~"), ".cache")
hf_cache_home = os.path.expanduser(
os.getenv(
"HF_HOME",
os.path.join(os.getenv("XDG_CACHE_HOME", default_home), "huggingface"),
)
)
default_cache_path = os.path.join(hf_cache_home, "hub")
default_assets_cache_path = os.path.join(hf_cache_home, "assets")
HUGGINGFACE_HUB_CACHE = os.getenv("HUGGINGFACE_HUB_CACHE", default_cache_path)
HUGGINGFACE_ASSETS_CACHE = os.getenv("HUGGINGFACE_ASSETS_CACHE", default_assets_cache_path)
HF_HUB_OFFLINE = _is_true(os.environ.get("HF_HUB_OFFLINE") or os.environ.get("TRANSFORMERS_OFFLINE"))
# Opt-out from telemetry requests
HF_HUB_DISABLE_TELEMETRY = _is_true(os.environ.get("HF_HUB_DISABLE_TELEMETRY") or os.environ.get("DISABLE_TELEMETRY"))
# In the past, token was stored in a hardcoded location
# `_OLD_HF_TOKEN_PATH` is deprecated and will be removed "at some point".
# See https://github.com/huggingface/huggingface_hub/issues/1232
_OLD_HF_TOKEN_PATH = os.path.expanduser("~/.huggingface/token")
HF_TOKEN_PATH = os.path.join(hf_cache_home, "token")
# Here, `True` will disable progress bars globally without possibility of enabling it
# programmatically. `False` will enable them without possibility of disabling them.
# If environment variable is not set (None), then the user is free to enable/disable
# them programmatically.
# TL;DR: env variable has priority over code
__HF_HUB_DISABLE_PROGRESS_BARS = os.environ.get("HF_HUB_DISABLE_PROGRESS_BARS")
HF_HUB_DISABLE_PROGRESS_BARS: Optional[bool] = (
_is_true(__HF_HUB_DISABLE_PROGRESS_BARS) if __HF_HUB_DISABLE_PROGRESS_BARS is not None else None
)
# Disable warning on machines that do not support symlinks (e.g. Windows non-developer)
HF_HUB_DISABLE_SYMLINKS_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_SYMLINKS_WARNING"))
# Disable warning when using experimental features
HF_HUB_DISABLE_EXPERIMENTAL_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_EXPERIMENTAL_WARNING"))
# Disable sending the cached token by default is all HTTP requests to the Hub
HF_HUB_DISABLE_IMPLICIT_TOKEN: bool = _is_true(os.environ.get("HF_HUB_DISABLE_IMPLICIT_TOKEN"))
# Enable fast-download using external dependency "hf_transfer"
# See:
# - https://pypi.org/project/hf-transfer/
# - https://github.com/huggingface/hf_transfer (private)
HF_HUB_ENABLE_HF_TRANSFER: bool = _is_true(os.environ.get("HF_HUB_ENABLE_HF_TRANSFER"))
# Used if download to `local_dir` and `local_dir_use_symlinks="auto"`
# Files smaller than 5MB are copy-pasted while bigger files are symlinked. The idea is to save disk-usage by symlinking
# huge files (i.e. LFS files most of the time) while allowing small files to be manually edited in local folder.
HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD: int = (
_as_int(os.environ.get("HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD")) or 5 * 1024 * 1024
)
# List frameworks that are handled by the InferenceAPI service. Useful to scan endpoints and check which models are
# deployed and running. Since 95% of the models are using the top 4 frameworks listed below, we scan only those by
# default. We still keep the full list of supported frameworks in case we want to scan all of them.
MAIN_INFERENCE_API_FRAMEWORKS = [
"diffusers",
"sentence-transformers",
"text-generation-inference",
"transformers",
]
ALL_INFERENCE_API_FRAMEWORKS = MAIN_INFERENCE_API_FRAMEWORKS + [
"adapter-transformers",
"allennlp",
"asteroid",
"bertopic",
"doctr",
"espnet",
"fairseq",
"fastai",
"fasttext",
"flair",
"generic",
"k2",
"keras",
"mindspore",
"nemo",
"open_clip",
"paddlenlp",
"peft",
"pyannote-audio",
"sklearn",
"spacy",
"span-marker",
"speechbrain",
"stanza",
"timm",
]