Spaces:
Runtime error
Runtime error
File size: 12,857 Bytes
d5dce88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Helpful utility functions and classes in relation to exploring API endpoints
with the aim for a user-friendly interface.
"""
import math
import re
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Union
if TYPE_CHECKING:
from ..hf_api import ModelInfo
def _filter_emissions(
models: Iterable["ModelInfo"],
minimum_threshold: Optional[float] = None,
maximum_threshold: Optional[float] = None,
) -> Iterable["ModelInfo"]:
"""Filters a list of models for those that include an emission tag and limit them to between two thresholds
Args:
models (Iterable of `ModelInfo`):
A list of models to filter.
minimum_threshold (`float`, *optional*):
A minimum carbon threshold to filter by, such as 1.
maximum_threshold (`float`, *optional*):
A maximum carbon threshold to filter by, such as 10.
"""
if minimum_threshold is None and maximum_threshold is None:
raise ValueError("Both `minimum_threshold` and `maximum_threshold` cannot both be `None`")
if minimum_threshold is None:
minimum_threshold = -1
if maximum_threshold is None:
maximum_threshold = math.inf
for model in models:
card_data = getattr(model, "cardData", None)
if card_data is None or not isinstance(card_data, dict):
continue
# Get CO2 emission metadata
emission = card_data.get("co2_eq_emissions", None)
if isinstance(emission, dict):
emission = emission["emissions"]
if not emission:
continue
# Filter out if value is missing or out of range
matched = re.search(r"\d+\.\d+|\d+", str(emission))
if matched is None:
continue
emission_value = float(matched.group(0))
if emission_value >= minimum_threshold and emission_value <= maximum_threshold:
yield model
@dataclass
class DatasetFilter:
"""
A class that converts human-readable dataset search parameters into ones
compatible with the REST API. For all parameters capitalization does not
matter.
Args:
author (`str`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by the original uploader (author or organization), such as
`facebook` or `huggingface`.
benchmark (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by their official benchmark.
dataset_name (`str`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by its name, such as `SQAC` or `wikineural`
language_creators (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub with how the data was curated, such as `crowdsourced` or
`machine_generated`.
language (`str` or `List`, *optional*):
A string or list of strings representing a two-character language to
filter datasets by on the Hub.
multilinguality (`str` or `List`, *optional*):
A string or list of strings representing a filter for datasets that
contain multiple languages.
size_categories (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by the size of the dataset such as `100K<n<1M` or
`1M<n<10M`.
task_categories (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by the designed task, such as `audio_classification` or
`named_entity_recognition`.
task_ids (`str` or `List`, *optional*):
A string or list of strings that can be used to identify datasets on
the Hub by the specific task such as `speech_emotion_recognition` or
`paraphrase`.
Examples:
```py
>>> from huggingface_hub import DatasetFilter
>>> # Using author
>>> new_filter = DatasetFilter(author="facebook")
>>> # Using benchmark
>>> new_filter = DatasetFilter(benchmark="raft")
>>> # Using dataset_name
>>> new_filter = DatasetFilter(dataset_name="wikineural")
>>> # Using language_creator
>>> new_filter = DatasetFilter(language_creator="crowdsourced")
>>> # Using language
>>> new_filter = DatasetFilter(language="en")
>>> # Using multilinguality
>>> new_filter = DatasetFilter(multilinguality="multilingual")
>>> # Using size_categories
>>> new_filter = DatasetFilter(size_categories="100K<n<1M")
>>> # Using task_categories
>>> new_filter = DatasetFilter(task_categories="audio_classification")
>>> # Using task_ids
>>> new_filter = DatasetFilter(task_ids="paraphrase")
```
"""
author: Optional[str] = None
benchmark: Optional[Union[str, List[str]]] = None
dataset_name: Optional[str] = None
language_creators: Optional[Union[str, List[str]]] = None
language: Optional[Union[str, List[str]]] = None
multilinguality: Optional[Union[str, List[str]]] = None
size_categories: Optional[Union[str, List[str]]] = None
task_categories: Optional[Union[str, List[str]]] = None
task_ids: Optional[Union[str, List[str]]] = None
@dataclass
class ModelFilter:
"""
A class that converts human-readable model search parameters into ones
compatible with the REST API. For all parameters capitalization does not
matter.
Args:
author (`str`, *optional*):
A string that can be used to identify models on the Hub by the
original uploader (author or organization), such as `facebook` or
`huggingface`.
library (`str` or `List`, *optional*):
A string or list of strings of foundational libraries models were
originally trained from, such as pytorch, tensorflow, or allennlp.
language (`str` or `List`, *optional*):
A string or list of strings of languages, both by name and country
code, such as "en" or "English"
model_name (`str`, *optional*):
A string that contain complete or partial names for models on the
Hub, such as "bert" or "bert-base-cased"
task (`str` or `List`, *optional*):
A string or list of strings of tasks models were designed for, such
as: "fill-mask" or "automatic-speech-recognition"
tags (`str` or `List`, *optional*):
A string tag or a list of tags to filter models on the Hub by, such
as `text-generation` or `spacy`.
trained_dataset (`str` or `List`, *optional*):
A string tag or a list of string tags of the trained dataset for a
model on the Hub.
```python
>>> from huggingface_hub import ModelFilter
>>> # For the author_or_organization
>>> new_filter = ModelFilter(author_or_organization="facebook")
>>> # For the library
>>> new_filter = ModelFilter(library="pytorch")
>>> # For the language
>>> new_filter = ModelFilter(language="french")
>>> # For the model_name
>>> new_filter = ModelFilter(model_name="bert")
>>> # For the task
>>> new_filter = ModelFilter(task="text-classification")
>>> # Retrieving tags using the `HfApi.get_model_tags` method
>>> from huggingface_hub import HfApi
>>> api = HfApi()
# To list model tags
>>> api.get_model_tags()
# To list dataset tags
>>> api.get_dataset_tags()
>>> new_filter = ModelFilter(tags="benchmark:raft")
>>> # Related to the dataset
>>> new_filter = ModelFilter(trained_dataset="common_voice")
```
"""
author: Optional[str] = None
library: Optional[Union[str, List[str]]] = None
language: Optional[Union[str, List[str]]] = None
model_name: Optional[str] = None
task: Optional[Union[str, List[str]]] = None
trained_dataset: Optional[Union[str, List[str]]] = None
tags: Optional[Union[str, List[str]]] = None
class AttributeDictionary(dict):
"""
`dict` subclass that also provides access to keys as attributes
If a key starts with a number, it will exist in the dictionary but not as an
attribute
Example:
```python
>>> d = AttributeDictionary()
>>> d["test"] = "a"
>>> print(d.test) # prints "a"
```
"""
def __getattr__(self, k):
if k in self:
return self[k]
else:
raise AttributeError(k)
def __setattr__(self, k, v):
(self.__setitem__, super().__setattr__)[k[0] == "_"](k, v)
def __delattr__(self, k):
if k in self:
del self[k]
else:
raise AttributeError(k)
def __dir__(self):
keys = sorted(self.keys())
keys = [key for key in keys if key.replace("_", "").isalpha()]
return super().__dir__() + keys
def __repr__(self):
repr_str = "Available Attributes or Keys:\n"
for key in sorted(self.keys()):
repr_str += f" * {key}"
if not key.replace("_", "").isalpha():
repr_str += " (Key only)"
repr_str += "\n"
return repr_str
class GeneralTags(AttributeDictionary):
"""
A namespace object holding all tags, filtered by `keys` If a tag starts with
a number, it will only exist in the dictionary
Example:
```python
>>> a.b["1a"] # will work
>>> a["b"]["1a"] # will work
>>> # a.b.1a # will not work
```
Args:
tag_dictionary (`dict`):
A dictionary of tags returned from the /api/***-tags-by-type api
endpoint
keys (`list`):
A list of keys to unpack the `tag_dictionary` with, such as
`["library","language"]`
"""
def __init__(self, tag_dictionary: dict, keys: Optional[list] = None):
self._tag_dictionary = tag_dictionary
if keys is None:
keys = list(self._tag_dictionary.keys())
for key in keys:
self._unpack_and_assign_dictionary(key)
def _unpack_and_assign_dictionary(self, key: str):
"Assign nested attributes to `self.key` containing information as an `AttributeDictionary`"
ref = AttributeDictionary()
setattr(self, key, ref)
for item in self._tag_dictionary.get(key, []):
label = item["label"].replace(" ", "").replace("-", "_").replace(".", "_")
ref[label] = item["id"]
self[key] = ref
class ModelTags(GeneralTags):
"""
A namespace object holding all available model tags If a tag starts with a
number, it will only exist in the dictionary
Example:
```python
>>> a.dataset["1_5BArabicCorpus"] # will work
>>> a["dataset"]["1_5BArabicCorpus"] # will work
>>> # o.dataset.1_5BArabicCorpus # will not work
```
Args:
model_tag_dictionary (`dict`):
A dictionary of valid model tags, returned from the
/api/models-tags-by-type api endpoint
"""
def __init__(self, model_tag_dictionary: dict):
keys = ["library", "language", "license", "dataset", "pipeline_tag"]
super().__init__(model_tag_dictionary, keys)
class DatasetTags(GeneralTags):
"""
A namespace object holding all available dataset tags If a tag starts with a
number, it will only exist in the dictionary
Example
```python
>>> a.size_categories["100K<n<1M"] # will work
>>> a["size_categories"]["100K<n<1M"] # will work
>>> # o.size_categories.100K<n<1M # will not work
```
Args:
dataset_tag_dictionary (`dict`):
A dictionary of valid dataset tags, returned from the
/api/datasets-tags-by-type api endpoint
"""
def __init__(self, dataset_tag_dictionary: dict):
keys = [
"language",
"multilinguality",
"language_creators",
"task_categories",
"size_categories",
"benchmark",
"task_ids",
"license",
]
super().__init__(dataset_tag_dictionary, keys)
|