Spaces:
Sleeping
Sleeping
Update app_old.py
Browse files- app_old.py +314 -1
app_old.py
CHANGED
|
@@ -1 +1,314 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
+
import inspect
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
import asyncio
|
| 8 |
+
import nest_asyncio
|
| 9 |
+
from typing import List, Dict, Any
|
| 10 |
+
from llama_index.core.agent import ReActAgent
|
| 11 |
+
from llama_index.core.agent.workflow import AgentWorkflow
|
| 12 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
| 13 |
+
from youtube_tool import youtube_transcript_tool, youtube_transcript_snippet_tool
|
| 14 |
+
#from multiple_tools import round_to_two_decimals_tool, text_inverter_tool, google_web_search_tool, wikipedia_search_tool
|
| 15 |
+
from multiple_tools import round_to_two_decimals_tool, text_inverter_tool, google_web_search_tool, wikipedia_search_tool, transcribe_audio_tool, excel_food_sales_sum_tool, parse_file_and_summarize_tool, solve_chess_image_tool, vegetable_classifier_tool
|
| 16 |
+
from agent import smart_agent
|
| 17 |
+
from llama_index.llms.openai import OpenAI
|
| 18 |
+
import re
|
| 19 |
+
#-----------------------------------------------------------------
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# (Keep Constants as is)
|
| 23 |
+
# --- Constants ---
|
| 24 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 25 |
+
HF_key = os.getenv("HF_TOKEN")
|
| 26 |
+
OpenAI_key = os.getenv("OPEN_AI_TOKEN")
|
| 27 |
+
|
| 28 |
+
# --- Basic Agent Definition ---
|
| 29 |
+
|
| 30 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 31 |
+
class BasicAgent:
|
| 32 |
+
def __init__(self):
|
| 33 |
+
print("BasicAgent initialized. . . .")
|
| 34 |
+
|
| 35 |
+
#self.llm = OpenAI(model="gpt-4o-mini", temperature=0.2, api_key=OpenAI_key)
|
| 36 |
+
# self.system_prompt = (
|
| 37 |
+
# "You are a helpful AI assistant completing GAIA benchmark tasks.\n"
|
| 38 |
+
# "You MUST use the tools provided when needed.\n"
|
| 39 |
+
# "If you already have enough information, respond directly with:\n"
|
| 40 |
+
# "<answer>\n"
|
| 41 |
+
# "Once you output '<answer>', stop reasoning and do not call any tool.\n"
|
| 42 |
+
# )
|
| 43 |
+
self.system_prompt = (
|
| 44 |
+
"You are a helpful assistant tasked with answering questions using a set of tools.\n"
|
| 45 |
+
"Your final answer must strictly follow this format:\n"
|
| 46 |
+
"FINAL ANSWER: [ANSWER]\n"
|
| 47 |
+
"Only write the answer in that exact format. Do not explain anything. Do not include any other text. \n"
|
| 48 |
+
"If you are provided with a similar question and its final answer, and the current question is **exactly the same**, then simply return the same final answer without using any tools. \n"
|
| 49 |
+
"Only use tools if the current question is different from the similar one. \n"
|
| 50 |
+
"Examples: \n"
|
| 51 |
+
"- FINAL ANSWER: FunkMonk \n"
|
| 52 |
+
"- FINAL ANSWER: Paris \n"
|
| 53 |
+
"- FINAL ANSWER: 128 \n"
|
| 54 |
+
" \n"
|
| 55 |
+
"Once you output 'FINAL ANSWER', stop reasoning and do not call any tool.\n"
|
| 56 |
+
"If you do not follow this format exactly, your response will be considered incorrect. \n"
|
| 57 |
+
)
|
| 58 |
+
self.llm = HuggingFaceInferenceAPI(
|
| 59 |
+
model_name="deepseek-ai/DeepSeek-R1-0528",
|
| 60 |
+
token=HF_key,
|
| 61 |
+
provider="auto"
|
| 62 |
+
)
|
| 63 |
+
#self.llm = OpenAI(model="gpt-4o", temperature=0.1, api_key=OpenAI_key)
|
| 64 |
+
# self.system_prompt = (
|
| 65 |
+
# "You are a helpful AI assistant completing GAIA benchmark tasks.\n"
|
| 66 |
+
# "You MUST use the tools provided to answer the user's question. Do not answer from your own knowledge.\n"
|
| 67 |
+
# "Carefully analyze the question to determine the most appropriate tool to use.\n"
|
| 68 |
+
# "Here are guidelines for using the tools:\n"
|
| 69 |
+
# "- Use 'wikipedia_search_tool' to find factual information about topics, events, people, etc. (e.g., 'Use wikipedia_search to find the population of France').\n"
|
| 70 |
+
# "- Use 'youtube_transcript_tool' to extract transcripts from YouTube videos when the question requires understanding the video content. (e.g., 'Use youtube_transcript to summarize the key points of this video').\n"
|
| 71 |
+
# "- Use 'transcribe_audio_tool' to transcribe uploaded audio files. (e.g., 'Use audio_transcriber to get the text from this audio recording').\n"
|
| 72 |
+
# "- Use 'solve_chess_image_tool' to analyze and solve chess puzzles from images. (e.g., 'Use chess_image_solver to determine the best move in this chess position').\n"
|
| 73 |
+
# "- Use 'parse_file_and_summarize_tool' to parse and analyze data from Excel or CSV files. (e.g., 'Use file_parser to calculate the average sales from this data').\n"
|
| 74 |
+
# "- Use 'vegetable_classifier_tool' to classify a list of food items and extract only the vegetables. (e.g., 'Use vegetable_classifier_2022 to get a list of the vegetables in this grocery list').\n"
|
| 75 |
+
# "- Use 'excel_food_sales_sum_tool' to extract total food sales from excel files. (e.g., 'Use excel_food_sales_sum to calculate the total food sales').\n"
|
| 76 |
+
# "- Use 'google_web_search_tool' to find factual information about topics, events, people, from the web if not spificied to be fund in wikipedia etc. (e.g., 'find the population of France').\n"
|
| 77 |
+
# "Do NOT guess or make up answers. If a tool cannot provide the answer, truthfully respond that you were unable to find the information.\n"
|
| 78 |
+
# "Use the tools to research or calculate the answer.\n"
|
| 79 |
+
# "If a tool fails, explain the reason for the failure instead of hallucinating an answer.\n"
|
| 80 |
+
# "Provide concise and direct answers as requested in the questions. Do not add extra information unless explicitly asked for.\n"
|
| 81 |
+
# "For example, if asked for a number, return only the number. If asked for a list, return only the list.\n"
|
| 82 |
+
# )
|
| 83 |
+
self.agent = AgentWorkflow.from_tools_or_functions(
|
| 84 |
+
[
|
| 85 |
+
wikipedia_search_tool, youtube_transcript_tool, youtube_transcript_snippet_tool, round_to_two_decimals_tool, text_inverter_tool, google_web_search_tool,transcribe_audio_tool, excel_food_sales_sum_tool, parse_file_and_summarize_tool, solve_chess_image_tool, vegetable_classifier_tool
|
| 86 |
+
],
|
| 87 |
+
llm=self.llm,
|
| 88 |
+
system_prompt=self.system_prompt,
|
| 89 |
+
)
|
| 90 |
+
def extract_answer(self, text: str) -> str:
|
| 91 |
+
match = re.search(r"(?<=<answer>)(.*?)(?=</answer>)", text)
|
| 92 |
+
return match.group(1) if match else ""
|
| 93 |
+
|
| 94 |
+
async def run(self, question: str) -> str:
|
| 95 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 96 |
+
# answer = await self.agent.run(question)
|
| 97 |
+
answer = await self.agent.run(
|
| 98 |
+
f"{question}\n\nIf you have enough information, respond with a concise final answer.",
|
| 99 |
+
max_iterations=10
|
| 100 |
+
)
|
| 101 |
+
return str(answer)
|
| 102 |
+
#return self.extract_answer(str(answer));
|
| 103 |
+
# if hasattr(answer, "output"):
|
| 104 |
+
# print(f"Agent returning answer: {answer}")
|
| 105 |
+
# return str(answer.output)
|
| 106 |
+
# else:
|
| 107 |
+
# print(f"Agent returning answer: {answer}")
|
| 108 |
+
# return str(answer)
|
| 109 |
+
|
| 110 |
+
def __call__(self, question: str) -> str:
|
| 111 |
+
return asyncio.run(self.run(question))
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 117 |
+
"""
|
| 118 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 119 |
+
and displays the results.
|
| 120 |
+
"""
|
| 121 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 122 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 123 |
+
|
| 124 |
+
if profile:
|
| 125 |
+
username= f"{profile.username}"
|
| 126 |
+
print(f"User logged in: {username}")
|
| 127 |
+
else:
|
| 128 |
+
print("User not logged in.")
|
| 129 |
+
return "Please Login to Hugging Face with the button.", None
|
| 130 |
+
|
| 131 |
+
api_url = DEFAULT_API_URL
|
| 132 |
+
questions_url = f"{api_url}/questions"
|
| 133 |
+
submit_url = f"{api_url}/submit"
|
| 134 |
+
|
| 135 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 136 |
+
try:
|
| 137 |
+
agent = BasicAgent()
|
| 138 |
+
except Exception as e:
|
| 139 |
+
print(f"Error instantiating agent: {e}")
|
| 140 |
+
return f"Error initializing agent: {e}", None
|
| 141 |
+
#In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 142 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 143 |
+
print(agent_code)
|
| 144 |
+
|
| 145 |
+
# 2. Fetch Questions
|
| 146 |
+
print(f"Fetching questions from: {questions_url}")
|
| 147 |
+
try:
|
| 148 |
+
response = requests.get(questions_url, timeout=15)
|
| 149 |
+
response.raise_for_status()
|
| 150 |
+
questions_data = response.json()
|
| 151 |
+
if not questions_data:
|
| 152 |
+
print("Fetched questions list is empty.")
|
| 153 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 154 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 155 |
+
except requests.exceptions.RequestException as e:
|
| 156 |
+
print(f"Error fetching questions: {e}")
|
| 157 |
+
return f"Error fetching questions: {e}", None
|
| 158 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 159 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 160 |
+
print(f"Response text: {response.text[:500]}")
|
| 161 |
+
return f"Error decoding server response for questions: {e}", None
|
| 162 |
+
except Exception as e:
|
| 163 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 164 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
| 165 |
+
|
| 166 |
+
# 3. Run your Agent
|
| 167 |
+
results_log = []
|
| 168 |
+
# answers_payload = []
|
| 169 |
+
# print(f"Running agent on {len(questions_data)} questions...")
|
| 170 |
+
# for item in questions_data:
|
| 171 |
+
# task_id = item.get("task_id")
|
| 172 |
+
# question_text = item.get("question")
|
| 173 |
+
# if not task_id or question_text is None:
|
| 174 |
+
# print(f"Skipping item with missing task_id or question: {item}")
|
| 175 |
+
# continue
|
| 176 |
+
# try:
|
| 177 |
+
# submitted_answer = agent(question_text)
|
| 178 |
+
# answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 179 |
+
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 180 |
+
# except Exception as e:
|
| 181 |
+
# print(f"Error running agent on task {task_id}: {e}")
|
| 182 |
+
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 183 |
+
|
| 184 |
+
# if not answers_payload:
|
| 185 |
+
# print("Agent did not produce any answers to submit.")
|
| 186 |
+
# return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 187 |
+
|
| 188 |
+
#3A
|
| 189 |
+
|
| 190 |
+
async def run_all_questions(questions_data):
|
| 191 |
+
answers_payload = []
|
| 192 |
+
for item in questions_data:
|
| 193 |
+
task_id = item.get("task_id")
|
| 194 |
+
question_text = item.get("question")
|
| 195 |
+
if not task_id or question_text is None:
|
| 196 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 197 |
+
continue
|
| 198 |
+
try:
|
| 199 |
+
answer = await agent.run(question_text) # await coroutine
|
| 200 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
| 201 |
+
print(f"Answered Task {task_id}:: {answer}")
|
| 202 |
+
except Exception as e:
|
| 203 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": f"AGENT ERROR: {e}"})
|
| 204 |
+
print(f"Error on Task {task_id}: {e}")
|
| 205 |
+
return answers_payload
|
| 206 |
+
|
| 207 |
+
answers_payload = asyncio.run(run_all_questions(questions_data))
|
| 208 |
+
#answers_payload = run_all_questions(questions_data)
|
| 209 |
+
|
| 210 |
+
#3B
|
| 211 |
+
|
| 212 |
+
# 4. Prepare Submission
|
| 213 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 214 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 215 |
+
print(status_update)
|
| 216 |
+
|
| 217 |
+
# 5. Submit
|
| 218 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 219 |
+
try:
|
| 220 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 221 |
+
response.raise_for_status()
|
| 222 |
+
result_data = response.json()
|
| 223 |
+
final_status = (
|
| 224 |
+
f"Submission Successful!\n"
|
| 225 |
+
f"User: {result_data.get('username')}\n"
|
| 226 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 227 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 228 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
| 229 |
+
)
|
| 230 |
+
print("Submission successful.")
|
| 231 |
+
results_df = pd.DataFrame(results_log)
|
| 232 |
+
return final_status, results_df
|
| 233 |
+
except requests.exceptions.HTTPError as e:
|
| 234 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 235 |
+
try:
|
| 236 |
+
error_json = e.response.json()
|
| 237 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 238 |
+
except requests.exceptions.JSONDecodeError:
|
| 239 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 240 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 241 |
+
print(status_message)
|
| 242 |
+
results_df = pd.DataFrame(results_log)
|
| 243 |
+
return status_message, results_df
|
| 244 |
+
except requests.exceptions.Timeout:
|
| 245 |
+
status_message = "Submission Failed: The request timed out."
|
| 246 |
+
print(status_message)
|
| 247 |
+
results_df = pd.DataFrame(results_log)
|
| 248 |
+
return status_message, results_df
|
| 249 |
+
except requests.exceptions.RequestException as e:
|
| 250 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 251 |
+
print(status_message)
|
| 252 |
+
results_df = pd.DataFrame(results_log)
|
| 253 |
+
return status_message, results_df
|
| 254 |
+
except Exception as e:
|
| 255 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 256 |
+
print(status_message)
|
| 257 |
+
results_df = pd.DataFrame(results_log)
|
| 258 |
+
return status_message, results_df
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# --- Build Gradio Interface using Blocks ---
|
| 262 |
+
with gr.Blocks() as demo:
|
| 263 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 264 |
+
gr.Markdown(
|
| 265 |
+
"""
|
| 266 |
+
**Instructions:**
|
| 267 |
+
|
| 268 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 269 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 270 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 271 |
+
|
| 272 |
+
---
|
| 273 |
+
**Disclaimers:**
|
| 274 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 275 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 276 |
+
"""
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
gr.LoginButton()
|
| 280 |
+
|
| 281 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 282 |
+
|
| 283 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 284 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 285 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 286 |
+
|
| 287 |
+
run_button.click(
|
| 288 |
+
fn=run_and_submit_all,
|
| 289 |
+
outputs=[status_output, results_table]
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
if __name__ == "__main__":
|
| 293 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 294 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 295 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 296 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 297 |
+
|
| 298 |
+
if space_host_startup:
|
| 299 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 300 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 301 |
+
else:
|
| 302 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 303 |
+
|
| 304 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 305 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 306 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 307 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 308 |
+
else:
|
| 309 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 310 |
+
|
| 311 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 312 |
+
|
| 313 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 314 |
+
demo.launch(debug=True, share=False)
|