import os import gradio as gr HF_TOKEN = os.getenv('HF_TOKEN') hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags") title = "Ask Rick a Question" description = """
The bot was trained to answer questions based on Rick and Morty dialogues. Ask Rick anything! ![](rick.png)
""" article = "Check out (the original Rick and Morty Bot)[https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot] that this demo is based off of." from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2") model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2") def predict(input): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into the right format response = tokenizer.decode(history[0]).split("<|endoftext|>") return response[1] gr.Interface(fn = predict, inputs = ["textbox"], outputs = ["text"],allow_flagging = "manual",title = title, flagging_callback = hf_writer, description = description, article = article ).launch(enable_queue=True) # customizes the input component