Spaces:
Sleeping
Sleeping
File size: 9,729 Bytes
309441d bdf2b0d 309441d bdf2b0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import streamlit as st
import os
import PyPDF2
from io import BytesIO
from openai import OpenAI
from huggingface_hub import InferenceClient
from dotenv import load_dotenv
load_dotenv()
# ---------------------
# Utility Functions
# ---------------------
def authenticate():
"""
A simple authentication mechanism using a password stored in an environment variable (APP_PASSWORD).
Returns True if the user is authenticated, otherwise stops the Streamlit execution.
"""
app_password = os.getenv("APP_PASSWORD", None)
if not app_password:
st.warning("No password set for the app. Please set the 'APP_PASSWORD' environment variable.")
return True # Or return False if you want to block access
if "authenticated" not in st.session_state:
st.session_state["authenticated"] = False
if not st.session_state["authenticated"]:
st.text_input("Enter your access code:", type="password", key="login_password")
if st.button("Login"):
if st.session_state["login_password"] == app_password:
st.session_state["authenticated"] = True
st.experimental_rerun()
else:
st.error("Invalid password. Please try again.")
st.stop()
return st.session_state["authenticated"]
def read_pdf(file):
"""
Reads a PDF file using PyPDF2 and returns the extracted text.
"""
pdf_reader = PyPDF2.PdfReader(file)
text = []
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text.append(page.extract_text())
return "\n".join(text)
def call_gpt_4o_api(
messages,
model,
temperature,
max_tokens,
stream
):
"""
Calls GPT-4o-compatible API (via OpenAI-like client).
Expects a list of messages (with "role" and "content" keys),
including the system message(s) as the first item(s) and
user/assistant messages subsequently.
Yields partial (streaming) or complete text.
"""
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY", ""))
# remove the second element from messages
# (likely the "additional PDF context" system message, or your second system message)
messages = [messages[0]] + messages[2:]
if stream:
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True
)
partial_text = ""
for chunk in response:
delta = chunk.choices[0].delta
if hasattr(delta, "content") and delta.content:
partial_text += delta.content
yield partial_text
else:
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=False
)
complete_text = response.choices[0].message.content
yield complete_text
def call_hf_inference(
messages,
model_repo,
temperature=0.7,
max_tokens=200,
stream=False
):
"""
Calls a Hugging Face open-source LLM via the InferenceClient's chat endpoint.
Expects a list of messages (with "role" and "content"), including
system and user/assistant roles.
Yields partial (streaming) or complete text.
"""
HF_TOKEN = os.getenv("HF_TOKEN", None)
if not HF_TOKEN:
raise ValueError("Please set your HF_TOKEN environment variable.")
client = InferenceClient(api_key=HF_TOKEN)
# remove the second element from messages
messages = [messages[0]] + messages[2:]
response = client.chat.completions.create(
model=model_repo,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
stream=stream
)
if stream:
partial_text = ""
for chunk in response:
delta = chunk.choices[0].delta
if isinstance(delta, dict):
chunk_content = delta.get("content", "")
partial_text += chunk_content
yield partial_text
else:
complete_text = response.choices[0].message["content"]
yield complete_text
# ---------------------
# Streamlit App
# ---------------------
def main():
if not authenticate():
st.stop() # or just `return` to end early
st.set_page_config(page_title="CVI-GPT", layout="centered")
st.title("CVI-GPT: Conversational Interface")
# ---------------------
# Sidebar: Model & Params
# ---------------------
st.sidebar.header("Model & Parameters")
# Model selection
model_choice = st.sidebar.selectbox(
"Select Model",
[
"gpt-4o",
"gpt-4o-mini",
"meta-llama/Llama-3.3-70B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
]
)
# Temperature & max_tokens
temperature = st.sidebar.slider("Temperature", 0.0, 1.5, 0.7, 0.1)
max_tokens = st.sidebar.slider("Max Tokens", 50, 2000, 500, 50)
# We store the selected model in session_state to detect changes
if "selected_model" not in st.session_state:
st.session_state.selected_model = model_choice
# If the user changes the model, reset the conversation
if model_choice != st.session_state.selected_model:
st.session_state.selected_model = model_choice
st.session_state["messages"] = [
{"role": "assistant", "content": f"Model changed to `{model_choice}`. How can I help you?"}
]
# System / Instruction Message
base_instructions = st.sidebar.text_area(
"System / Instruction Message",
value=(
"You are a Helpful Assistant. Respond in a concise, helpful, and markdown-friendly format.\n\n"
"Formatting Instructions:\n"
"- Responses should be in markdown.\n"
"- Use headings, bullet points, bold, italics, etc. for clarity.\n"
"- Use triple backticks for code blocks.\n"
"- Provide references or disclaimers when needed."
),
height=200
)
# Clear Chat Button
if st.sidebar.button("Clear Chat"):
st.session_state["messages"] = [
{"role": "assistant", "content": "Chat cleared. How can I help you now?"}
]
# ---------------------
# PDF Upload
# ---------------------
st.sidebar.header("Optional: PDF Upload")
uploaded_file = st.sidebar.file_uploader("Upload a PDF", type=["pdf"])
pdf_text = ""
if uploaded_file is not None:
pdf_text = read_pdf(uploaded_file)
# We do NOT print the PDF content. Just let user know it's loaded.
st.sidebar.write("PDF content loaded (not displayed).")
st.sidebar.divider()
with st.sidebar:
st.subheader("👨💻 Author: *Adrish Maity*", anchor=False)
# ---------------------
# Initialize conversation if not present
# ---------------------
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Hello! How can I help you today?"}
]
# ---------------------
# Display Conversation
# ---------------------
for msg in st.session_state["messages"]:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
# ---------------------
# Chat Input
# ---------------------
if user_input := st.chat_input("Type your question..."):
# Just store the user's typed text
user_text = user_input
st.session_state["messages"].append({"role": "user", "content": user_text})
# Display user's message
with st.chat_message("user"):
st.markdown(user_text)
# Now build the full conversation:
# 1) A system message (instructions)
# 2) A second system message with PDF context if present (kept hidden from UI)
# 3) All prior conversation
full_conversation = [{"role": "system", "content": base_instructions}]
if pdf_text:
full_conversation[0]["content"] += "\n\n" + "Additional PDF context (user provided):\n" + pdf_text
full_conversation.extend(st.session_state["messages"])
# Placeholder for assistant's streaming response
with st.chat_message("assistant"):
response_placeholder = st.empty()
streamed_text = ""
# Decide how to call the model
if model_choice in ["gpt-4o", "gpt-4o-mini"]:
stream_response = call_gpt_4o_api(
messages=full_conversation,
model=model_choice,
temperature=temperature,
max_tokens=max_tokens,
stream=True
)
for partial_output in stream_response:
streamed_text = partial_output
response_placeholder.markdown(streamed_text)
else:
hf_stream = call_hf_inference(
messages=full_conversation,
model_repo=model_choice,
temperature=temperature,
max_tokens=max_tokens,
stream=True
)
for partial_output in hf_stream:
streamed_text = partial_output
response_placeholder.markdown(streamed_text)
# Once done, store the final assistant message
st.session_state["messages"].append({"role": "assistant", "content": streamed_text})
if __name__ == "__main__":
main() |