File size: 9,031 Bytes
f864d05
 
 
 
 
 
 
 
 
 
 
 
d057d13
f864d05
 
 
 
 
 
 
d057d13
f864d05
 
 
 
 
 
 
 
 
 
 
 
 
 
d057d13
f864d05
 
 
 
 
 
 
 
 
 
 
d057d13
f864d05
 
 
 
 
 
 
 
 
 
56ae08e
d057d13
277c9f8
f864d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import streamlit as st
import pandas as pd
import sys
import os
from datasets import load_from_disk, load_dataset
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import time
from annotated_text import annotated_text

ORG_ID = "cornell-authorship"
TOKEN = st.secrets["token"]

@st.cache
def preprocess_text(s):
    return list(filter(lambda x: x!= '', (''.join(c if c.isalnum() or c == ' ' else ' ' for c in s)).split(' ')))

@st.cache
def get_pairwise_distances(model):
    dataset = load_dataset(f"{ORG_ID}/{model}_distance", use_auth_token=TOKEN)["train"]
    df = pd.DataFrame(dataset).set_index('index')
    return df

@st.cache
def get_pairwise_distances_chunked(model, chunk):
    # for df in pd.read_csv(f"{ASSETS_PATH}/{model}/pairwise_distances.csv", chunksize = 16):
    # 	print(df.iloc[0]['queries'])
    # 	if chunk == int(df.iloc[0]['queries']):
    # 		return df
    return get_pairwise_distances(model)

@st.cache
def get_query_strings():
    # df = pd.read_json(hf_hub_download(repo_id=repo_id, filename="IUR_Reddit_test_queries_english.jsonl"), lines = True)
    dataset = load_dataset(f"{ORG_ID}/IUR_Reddit_test_queries_english", use_auth_token=TOKEN)["train"]
    df = pd.DataFrame(dataset)
    df['index'] = df.reset_index().index
    return df
    # df['partition'] = df['index']%100
    # df.to_parquet(f"{ASSETS_PATH}/IUR_Reddit_test_queries_english.parquet", index = 'index', partition_cols = 'partition')
    
    # return pd.read_parquet(f"{ASSETS_PATH}/IUR_Reddit_test_queries_english.parquet", columns=['fullText', 'index', 'authorIDs'])

@st.cache
def get_candidate_strings():
    # df = pd.read_json(f"{ASSETS_PATH}/IUR_Reddit_test_candidates_english.jsonl", lines = True)
    dataset = load_dataset(f"{ORG_ID}/IUR_Reddit_test_candidates_english", use_auth_token=TOKEN)["train"]
    df = pd.DataFrame(dataset)
    df['index'] = df.reset_index().index
    return df
    # df['partition'] = df['index']%100
    # df.to_parquet(f"{ASSETS_PATH}/IUR_Reddit_test_candidates_english.parquet", index = 'index', partition_cols = 'partition')
    # return pd.read_parquet(f"{ASSETS_PATH}/IUR_Reddit_test_candidates_english.parquet", columns=['fullText', 'index', 'authorIDs'])

@st.cache
def get_embedding_dataset(model):
    # data = load_from_disk(f"{ASSETS_PATH}/{model}/embedding")
    st.write(model)
    data = load_dataset(f"{ORG_ID}/{model}_embedding", use_auth_token=TOKEN)
    st.write(type(data))
    return data

@st.cache
def get_bad_queries(model):
    df = get_query_strings().iloc[list(get_pairwise_distances(model)['queries'].unique())][['fullText', 'index', 'authorIDs']]
    return df

@st.cache
def get_gt_candidates(model, author):
    gt_candidates = get_candidate_strings()
    df = gt_candidates[gt_candidates['authorIDs'].apply(lambda x: x[0]) == author]
    return df

@st.cache
def get_candidate_text(l):
    return get_candidate_strings().at[l,'fullText']

@st.cache
def get_annotated_text(text, word, pos):
    # print("here", word, pos)
    start= text.index(word, pos)
    end = start+len(word)
    return (text[:start], (text[start:end ], 'SELECTED'), text[end:]), end

class AgGridBuilder:
    __static_key = 0
    def build_ag_grid(table, display_columns):
        AgGridBuilder.__static_key += 1
        options_builder = GridOptionsBuilder.from_dataframe(table[display_columns])
        options_builder.configure_pagination(paginationAutoPageSize=False, paginationPageSize=10)
        options_builder.configure_selection(selection_mode= 'single', pre_selected_rows = [0])
        options = options_builder.build()
        return AgGrid(table, gridOptions = options, fit_columns_on_grid_load=True, key = AgGridBuilder.__static_key, reload_data = True, update_mode = GridUpdateMode.SELECTION_CHANGED | GridUpdateMode.VALUE_CHANGED)

if __name__ == '__main__':
    st.set_page_config(layout="wide")

    # models = filter(lambda file_name: os.path.isdir(f"{ASSETS_PATH}/{file_name}") and not file_name.endswith(".parquet"), os.listdir(ASSETS_PATH))
    models = ['luar_clone2_top_100']
 
    with st.sidebar:
        current_model = st.selectbox(
            "Select Model to analyze", 
            models
            )

    pairwise_distances = get_pairwise_distances(current_model)
    embedding_dataset = get_embedding_dataset(current_model)

    candidate_string_grid = None
    gt_candidate_string_grid  = None
    with st.container():
        t1 = time.time()
        st.title("Full Text")
        col1, col2 = st.columns([14, 2])
        t2 = time.time()
        query_table = get_bad_queries(current_model)
        t3 = time.time()
        # print(query_table)
        with col2:
            index = st.number_input('Enter Query number to inspect', min_value = 0, max_value = query_table.shape[0], step = 1)
            query_text = query_table.loc[index]['fullText']
            preprocessed_query_text = preprocess_text(query_text)
            text_highlight_index = st.number_input('Enter word #', min_value = 0, max_value = len(preprocessed_query_text), step = 1)
            query_index = int(query_table.iloc[index]['index'])

        with col1:
            if 'pos_highlight' not in st.session_state or text_highlight_index == 0:
                st.session_state['pos_highlight'] = text_highlight_index
                st.session_state['pos_history'] = [0]

            if st.session_state['pos_highlight'] > text_highlight_index:
                st.session_state['pos_history'] = st.session_state['pos_history'][:-2]
                if len(st.session_state['pos_history']) == 0:
                    st.session_state['pos_history'] = [0]
            # print("pos", st.session_state['pos_history'], st.session_state['pos_highlight'], text_highlight_index)
            anotated_text_, pos = get_annotated_text(query_text, preprocessed_query_text[text_highlight_index-1], st.session_state['pos_history'][-1]) if text_highlight_index >= 1 else ((query_text), 0)
            if st.session_state['pos_highlight'] < text_highlight_index:
                st.session_state['pos_history'].append(pos)
            st.session_state['pos_highlight'] = text_highlight_index
            annotated_text(*anotated_text_)
            # annotated_text("Lol, this" , ('guy', 'SELECTED') , "is such a PR chameleon. \n\n In the Chan Zuckerberg Initiative announcement, he made it sound like he was giving away all his money to charity <PERSON> or <PERSON>. http://www.businessinsider.in/Mark-Zuckerberg-says-hes-giving-99-of-his-Facebook-shares-45-billion-to-charity/articleshow/50005321.cms Apparently, its just a VC fund. And there are still people out there who believe Facebook.org was an initiative to bring Internet to the poor.")
            t4 = time.time()

        # print(f"query time query text: {t3-t2}, total time: {t4-t1}")
    with st.container():
        st.title("Top 16 Recommended Candidates")
        col1, col2, col3 = st.columns([10, 4, 2])	
        rec_candidates = pairwise_distances[pairwise_distances["queries"]==query_index]['candidates']
        # print(rec_candidates)
        l = list(rec_candidates)
        with col3:
            candidate_rec_index = st.number_input('Enter recommended candidate number to inspect', min_value = 0, max_value = len(l), step = 1)
            print("l:",l, query_index)
            pairwise_candidate_index = int(l[candidate_rec_index])
        with col1:
            st.header("Text")
            t1 = time.time()
            st.write(get_candidate_text(pairwise_candidate_index))
            t2 = time.time()
        with col2:
            st.header("Cosine Distance")
            st.write(float(pairwise_distances[\
                ( pairwise_distances['queries'] == query_index ) \
                &
                ( pairwise_distances['candidates'] == pairwise_candidate_index)]['distances']))
        print(f"candidate string retreival: {t2-t1}")
    with st.container():
        t1 = time.time()
        st.title("Candidates With Same Authors As Query")
        col1, col2, col3 = st.columns([10, 4, 2])
        t2 = time.time()
        gt_candidates = get_gt_candidates(current_model, query_table.iloc[query_index]['authorIDs'][0])
        t3 = time.time()

        with col3:
            candidate_index = st.number_input('Enter ground truthnumber to inspect', min_value = 0, max_value = gt_candidates.shape[0], step = 1)
            gt_candidate_index = int(gt_candidates.iloc[candidate_index]['index'])
        with col1:
            st.header("Text")
            st.write(gt_candidates.iloc[candidate_index]['fullText'])
        with col2:
            t4 = time.time()
            st.header("Cosine Distance")
            st.write(1-cosine_similarity(np.array([embedding_dataset['queries'][query_index]['embedding']]), np.array([embedding_dataset['candidates'][gt_candidate_index]['embedding']]))[0,0])
            t5 = time.time()
        print(f"find gt candidates: {t3-t2}, find cosine: {t5-t4}, total: {t5-t1}")