File size: 11,772 Bytes
978ee76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr

from transformers import (
    pipeline,
    AutoModelForSeq2SeqLM,
    AutoTokenizer
)

M1 = "anshoomehra/question-generation-auto-t5-v1-base-s-q"
M2 = "anshoomehra/question-generation-auto-t5-v1-base-s-q-c" 

M4 = "anshoomehra/question-generation-auto-hints-t5-v1-base-s-q"
M5 = "anshoomehra/question-generation-auto-hints-t5-v1-base-s-q-c" 

device = ['cuda' if torch.cuda.is_available() else 'cpu'][0]

_m1 = AutoModelForSeq2SeqLM.from_pretrained(M1).to(device)
_tk1 = AutoTokenizer.from_pretrained(M1, cache_dir="./cache")

_m2 = AutoModelForSeq2SeqLM.from_pretrained(M2).to(device)
_tk2 = AutoTokenizer.from_pretrained(M2, cache_dir="./cache")

_m4 = AutoModelForSeq2SeqLM.from_pretrained(M4).to(device)
_tk4 = AutoTokenizer.from_pretrained(M4, cache_dir="./cache")

_m5 = AutoModelForSeq2SeqLM.from_pretrained(M5).to(device)
_tk5 = AutoTokenizer.from_pretrained(M5, cache_dir="./cache")

def _formatQs(questions):
    _finalQs = ""
    
    if questions is not None:
        _qList = questions[0].strip().split("?")
        
        qIdx = 1
        if len(_qList) > 1:
            for idx, _q in enumerate(_qList):
                _q = _q.strip()
                if _q is not None and len(_q) !=0:
                    _finalQs += str(qIdx) + ". " + _q + "? \n"
                    qIdx+=1
        else:
            if len(_qList[0])>1:
                _finalQs = "1. " + str(_qList[0]) + "?"
            else:
                _finalQs = None
    return _finalQs
    
def _generate(mode, context, hint=None, minLength=50, maxLength=500, lengthPenalty=2.0, earlyStopping=True, numReturnSequences=1, numBeams=2, noRepeatNGramSize=0, doSample=False, topK=0, topP=0, temperature=0):
          
    predictionM1 = None
    predictionM2 = None
    predictionM4 = None
    predictionM5 = None
    
    if mode == 'Auto':
        _inputText = "question_context: " + context
        
        _encoding = _tk1.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 
        _outputEncoded = _m1.generate(_encoding, 
                                   min_length=minLength, 
                                   max_length=maxLength,
                                   length_penalty=lengthPenalty,
                                   early_stopping=earlyStopping,
                                   num_return_sequences=numReturnSequences,
                                   num_beams=numBeams,
                                   no_repeat_ngram_size=noRepeatNGramSize,
                                   do_sample=doSample,
                                   top_k=topK,
                                   top_p=topP,
                                   temperature=temperature
                               )
        predictionM1 = [_tk1.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]

        _encoding = _tk2.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
        _outputEncoded = _m2.generate(_encoding, 
                                   min_length=minLength, 
                                   max_length=maxLength,
                                   length_penalty=lengthPenalty,
                                   early_stopping=earlyStopping,
                                   num_return_sequences=numReturnSequences,
                                   num_beams=numBeams,
                                   no_repeat_ngram_size=noRepeatNGramSize,
                                   do_sample=doSample,
                                   top_k=topK,
                                   top_p=topP,
                                   temperature=temperature
                               )
        predictionM2 = [_tk2.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
        
        _encoding = _tk4.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
        _outputEncoded = _m4.generate(_encoding, 
                                   min_length=minLength, 
                                   max_length=maxLength,
                                   length_penalty=lengthPenalty,
                                   early_stopping=earlyStopping,
                                   num_return_sequences=numReturnSequences,
                                   num_beams=numBeams,
                                   no_repeat_ngram_size=noRepeatNGramSize,
                                   do_sample=doSample,
                                   top_k=topK,
                                   top_p=topP,
                                   temperature=temperature
                               )
        predictionM4 = [_tk4.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
        
        _encoding = _tk5.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
        _outputEncoded = _m5.generate(_encoding, 
                                   min_length=minLength, 
                                   max_length=maxLength,
                                   length_penalty=lengthPenalty,
                                   early_stopping=earlyStopping,
                                   num_return_sequences=numReturnSequences,
                                   num_beams=numBeams,
                                   no_repeat_ngram_size=noRepeatNGramSize,
                                   do_sample=doSample,
                                   top_k=topK,
                                   top_p=topP,
                                   temperature=temperature
                               )
        predictionM5 = [_tk5.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
 
    elif mode == 'Hints':
        _inputText = "question_hint: " + hint + "</s>question_context: " + context

        _encoding = _tk4.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
        _outputEncoded = _m4.generate(_encoding, 
                                   min_length=minLength, 
                                   max_length=maxLength,
                                   length_penalty=lengthPenalty,
                                   early_stopping=earlyStopping,
                                   num_return_sequences=numReturnSequences,
                                   num_beams=numBeams,
                                   no_repeat_ngram_size=noRepeatNGramSize,
                                   do_sample=doSample,
                                   top_k=topK,
                                   top_p=topP,
                                   temperature=temperature
                               )
        predictionM4 = [_tk4.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
        
        _encoding = _tk5.encode(_inputText, return_tensors='pt', truncation=True, padding='max_length').to(device) # max_length=1024 .to(device)
        _outputEncoded = _m5.generate(_encoding, 
                                   min_length=minLength, 
                                   max_length=maxLength,
                                   length_penalty=lengthPenalty,
                                   early_stopping=earlyStopping,
                                   num_return_sequences=numReturnSequences,
                                   num_beams=numBeams,
                                   no_repeat_ngram_size=noRepeatNGramSize,
                                   do_sample=doSample,
                                   top_k=topK,
                                   top_p=topP,
                                   temperature=temperature
                               )
        predictionM5 = [_tk5.decode(id, clean_up_tokenization_spaces=False, skip_special_tokens=True) for id in _outputEncoded]
  
    predictionM1 = _formatQs(predictionM1)
    predictionM2 = _formatQs(predictionM2)
    predictionM4 = _formatQs(predictionM4)
    predictionM5 = _formatQs(predictionM5)
    
    return predictionM1, predictionM2, predictionM4, predictionM5
    
with gr.Blocks() as demo:
    
    gr.Markdown(value="# Question Generation Demo")
    with gr.Accordion(variant='compact', label='Hyperparams', open=False):
        with gr.Row():
            mode = gr.Radio(["Auto", "Hints"], value="Auto", label="Mode")
        with gr.Row():   
            minLength = gr.Slider(10, 512, 50, step=1, label="Min Length")
            maxLength = gr.Slider(20, 512, 164, step=1, label="Max Length")
            lengthPenalty = gr.Slider(-5, 5, 1, label="Length Penalty")
            earlyStopping = gr.Checkbox(True, label="Early Stopping [EOS]")
            numReturnSequences = gr.Slider(1, 3, 1, step=1, label="Num return Sequences")
        with gr.Row():   
            numBeams = gr.Slider(1, 10, 4, step=1, label="Beams")
            noRepeatNGramSize = gr.Slider(0, 5, 3, step=1, label="No Repeat N-Gram Size")
        with gr.Row():
            doSample = gr.Checkbox(label="Do Random Sample")
            topK = gr.Slider(0, 50, 0, step=1, label="Top K")
            topP = gr.Slider(0, 1, 0, label="Top P/Nucleus Sampling")
            temperature = gr.Slider(0.01, 1, 1, label="Temperature") 
    
    with gr.Accordion(variant='compact', label='Input Values'):
        with gr.Row(variant='compact'):
                contextDefault = "Google LLC is an American multinational technology company focusing on search engine technology, online advertising, cloud computing, computer software, quantum computing, e-commerce, artificial intelligence, and consumer electronics. It has been referred to as 'the most powerful company in the world' and one of the world's most valuable brands due to its market dominance, data collection, and technological advantages in the area of artificial intelligence. Its parent company Alphabet is considered one of the Big Five American information technology companies, alongside Amazon, Apple, Meta, and Microsoft."
                hintDefault  = ""
                context = gr.Textbox(contextDefault, label="Context", placeholder="Dummy Context", lines=5)
                hint = gr.Textbox(hintDefault, label="Hint", placeholder="Enter hint here. Ensure the mode is set to 'Hints' prior using hints.", lines=2)
 
    with gr.Accordion(variant='compact', label='Multi-Task Model(s) Sensitive To Hints'):
        with gr.Row(variant='compact'):
            _predictionM5 = gr.Textbox(label="Predicted Questions - question-generation-auto-hints-t5-v1-base-s-q-c [Hints Sensitive]")
            _predictionM4 = gr.Textbox(label="Predicted Questions - question-generation-auto-hints-t5-v1-base-s-q [Hints Sensitive]")
            
    with gr.Accordion(variant='compact', label='Uni-Task Model(s) Non-Sensitive To Hints'):
        with gr.Row(variant='compact'):
            _predictionM2 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q-c [No Hints]")
            _predictionM1 = gr.Textbox(label="Predicted Questions - question-generation-auto-t5-v1-base-s-q [No Hints]")

    with gr.Row():       
        gen_btn = gr.Button("Generate Questions")
        gen_btn.click(fn=_generate,
                      inputs=[mode, context, hint, minLength, maxLength, lengthPenalty, earlyStopping, numReturnSequences, numBeams, noRepeatNGramSize, doSample, topK, topP, temperature],
                      outputs=[_predictionM1, _predictionM2, _predictionM4, _predictionM5]
                      )