File size: 7,751 Bytes
ff9549f 689e49e ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 ff9549f b8863d9 2a796f1 b8863d9 2a796f1 b8863d9 2a796f1 b8863d9 2a796f1 b8863d9 ff9549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import marimo
__generated_with = "0.11.17"
app = marimo.App(width="medium")
@app.cell
def _(mo):
mo.md(r"""# Analyzing Colorectal Cancer Dataset""")
return
@app.cell
def _():
import marimo as mo
import polars as pl
return mo, pl
@app.cell
def _(pl):
dataset = pl.read_csv('./dataset/colorectal_cancer_dataset.csv')
# dataset.select("Tumor_Size_mm").describe()
return (dataset,)
@app.cell(hide_code=True)
def _(dataset, pl):
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
ord_encoder = OrdinalEncoder()
ord_encoded = ord_encoder.fit_transform(dataset.select('Early_Detection', 'Cancer_Stage', 'Survival_5_years'))
encoded_features = ord_encoder.get_feature_names_out(['Early_Detection', 'Cancer_Stage', 'Survival_5_years'])
encoded_schema = {name: pl.Int8 for name in encoded_features}
# print(encoded_schema)
dataset_encoded_parts = pl.DataFrame(ord_encoded, encoded_schema)
dataset_encoded = dataset.with_columns(dataset_encoded_parts)
# dataset_encoded
return (
OneHotEncoder,
OrdinalEncoder,
dataset_encoded,
dataset_encoded_parts,
encoded_features,
encoded_schema,
ord_encoded,
ord_encoder,
)
@app.cell
def _(dataset_encoded, mo):
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import BernoulliNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, classification_report, confusion_matrix
X = dataset_encoded.select(['Tumor_Size_mm', 'Early_Detection', 'Cancer_Stage'])
y = dataset_encoded.select(['Survival_5_years'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=101)
logreg = LogisticRegression()
y_pred_logreg = logreg.fit(X_train, y_train).predict(X_test)
bnb = BernoulliNB()
y_pred_bnb = bnb.fit(X_train, y_train).predict(X_test)
dectree = DecisionTreeClassifier()
y_pred_dectree = dectree.fit(X_train, y_train).predict(X_test)
mo.md(f"""
## Logistic Regression
Accuracy score: {accuracy_score(y_test, y_pred_logreg)}
Precision score: {precision_score(y_test, y_pred_logreg)}
Confusion matrix:
```
{confusion_matrix(y_test, y_pred_logreg)}
```
Classification report:
```
{classification_report(y_test, y_pred_logreg)}
```
## Bernoulli Naive Bayes
Accuracy score: {accuracy_score(y_test, y_pred_bnb)}
Precision score: {precision_score(y_test, y_pred_bnb)}
Confusion matrix:
```
{confusion_matrix(y_test, y_pred_bnb)}
```
Classification report:
```
{classification_report(y_test, y_pred_bnb)}
```
## Decision Tree Classifier
Accuracy score: {accuracy_score(y_test, y_pred_dectree)}
Precision score: {precision_score(y_test, y_pred_dectree)}
Confusion matrix:
```
{confusion_matrix(y_test, y_pred_dectree)}
```
Classification report:
```
{classification_report(y_test, y_pred_dectree)}
```
{mo.callout("Classifiers don't work well with this dataset, let's try something else.", kind='info')}
""")
return (
BernoulliNB,
DecisionTreeClassifier,
LogisticRegression,
X,
X_test,
X_train,
accuracy_score,
bnb,
classification_report,
confusion_matrix,
dectree,
logreg,
precision_score,
train_test_split,
y,
y_pred_bnb,
y_pred_dectree,
y_pred_logreg,
y_test,
y_train,
)
@app.cell
def _(OrdinalEncoder, dataset, mo, pl):
def _():
from sklearn.cluster import KMeans, SpectralClustering, DBSCAN
from sklearn.svm import SVC
from sklearn.metrics import adjusted_rand_score, normalized_mutual_info_score, homogeneity_score, completeness_score, v_measure_score, silhouette_score, davies_bouldin_score, calinski_harabasz_score
import altair as alt
genmut_encoder = OrdinalEncoder()
genmut_encoded = genmut_encoder.fit_transform(dataset.select('Genetic_Mutation'))
genmut_features = genmut_encoder.get_feature_names_out(['Genetic_Mutation'])
encoded_schema = {name: pl.Int8 for name in genmut_features}
dataset_encoded_parts = pl.DataFrame(genmut_encoded, encoded_schema)
dataset_encoded = dataset.with_columns(dataset_encoded_parts)
# Use samples since dataset is way too big to run locally
dataset_encoded = dataset_encoded.sample(3000, seed=11)
X = dataset_encoded.select(['Tumor_Size_mm', 'Genetic_Mutation'])
y = dataset_encoded.select(['Cancer_Stage']).to_series()
kmeans = KMeans(n_clusters=3, random_state=11)
spec = SpectralClustering(n_clusters=3, random_state=11)
labels_kmeans = kmeans.fit_predict(X)
labels_spec = spec.fit_predict(X)
# df_kmeans_parts = pl.DataFrame(labels_kmeans, schema=pl.String)
df_kmeans = X.with_columns(pl.lit(labels_kmeans, dtype=pl.String).alias('kmeans_cluster'))
df_spec = X.with_columns(pl.lit(labels_spec, dtype=pl.String).alias('spectral_cluster'))
return mo.vstack([
mo.md(f"""
## K-Means Clustering
### External Metrics (Based on Cancer Stage Labels)
Adjusted Rand Index (ARI): {adjusted_rand_score(y, labels_kmeans)}
Normalized Mutual Information (NMI): {normalized_mutual_info_score(y, labels_kmeans)}
Homogeneity: {homogeneity_score(y, labels_kmeans)}
Completeness: {completeness_score(y, labels_kmeans)}
V-measure: {v_measure_score(y, labels_kmeans)}
### Internal Metrics
Silhouette Score: {silhouette_score(X, labels_kmeans)}
Davies-Bouldin Index: {davies_bouldin_score(X, labels_kmeans)}
Calinski-Harabasz Index: {calinski_harabasz_score(X, labels_kmeans)}
## Spectral Clustering
### External Metrics (Based on Cancer Stage Labels)
Adjusted Rand Index (ARI): {adjusted_rand_score(y, labels_spec)}
Normalized Mutual Information (NMI): {normalized_mutual_info_score(y, labels_spec)}
Homogeneity: {homogeneity_score(y, labels_spec)}
Completeness: {completeness_score(y, labels_spec)}
V-measure: {v_measure_score(y, labels_spec)}
### Internal Metrics
Silhouette Score: {silhouette_score(X, labels_spec)}
Davies-Bouldin Index: {davies_bouldin_score(X, labels_spec)}
Calinski-Harabasz Index: {calinski_harabasz_score(X, labels_spec)}
{mo.callout("Unsupervised clustering techniques do perform reasonably well, but does not correlate to other labels.", 'info')}
"""),
mo.hstack([
alt.Chart(df_kmeans, autosize='pad').mark_rect().encode(
alt.X('Genetic_Mutation:N'),
y='Tumor_Size_mm',
color='kmeans_cluster'
).properties(
width=325
).interactive(),
alt.Chart(df_spec, autosize='pad').mark_rect().encode(
alt.X('Genetic_Mutation:N'),
y='Tumor_Size_mm',
color='spectral_cluster'
).properties(
width=325
).interactive(),
])
])
_()
return
if __name__ == "__main__":
app.run()
|