File size: 4,387 Bytes
ff9549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import marimo

__generated_with = "0.11.13"
app = marimo.App(width="medium")


@app.cell
def _():
    import marimo as mo
    import polars as pl
    return mo, pl


@app.cell
def _(pl):
    dataset = pl.read_csv('./dataset/colorectal_cancer_dataset.csv')
    dataset
    return (dataset,)


@app.cell
def _(dataset, pl):
    from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder

    encoder = OneHotEncoder(sparse_output=False)
    ord_encoder = OrdinalEncoder()
    encoded = encoder.fit_transform(dataset.select(['Obesity_BMI', 'Cancer_Stage']))
    ord_encoded = ord_encoder.fit_transform(dataset.select('Survival_5_years'))
    encoded_features = encoder.get_feature_names_out(['Obesity_BMI', 'Cancer_Stage'])
    ord_encoded_features = ord_encoder.get_feature_names_out(['Survival_5_years'])
    encoded_schema = {name: pl.Int8 for name in encoded_features}
    ord_encoded_schema = {name: pl.Int8 for name in ord_encoded_features}
    dataset_encoded_parts = pl.DataFrame(encoded, schema=encoded_schema)
    dataset_ord_encoded_parts = pl.DataFrame(ord_encoded, schema=ord_encoded_schema)
    dataset_encoded = dataset.with_columns(dataset_encoded_parts).with_columns(dataset_ord_encoded_parts)
    dataset_encoded
    return (
        OneHotEncoder,
        OrdinalEncoder,
        dataset_encoded,
        dataset_encoded_parts,
        dataset_ord_encoded_parts,
        encoded,
        encoded_features,
        encoded_schema,
        encoder,
        ord_encoded,
        ord_encoded_features,
        ord_encoded_schema,
        ord_encoder,
    )


@app.cell
def _(dataset_encoded, encoded_features, mo):
    from sklearn.linear_model import LogisticRegression
    from sklearn.naive_bayes import BernoulliNB
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score, precision_score, classification_report, confusion_matrix

    X = dataset_encoded.select(['Age', 'Tumor_Size_mm'] + encoded_features.tolist())
    y = dataset_encoded.select(['Survival_5_years'])
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=33)
    logreg = LogisticRegression()
    y_pred_logreg = logreg.fit(X_train, y_train).predict(X_test)
    bnb = BernoulliNB()
    y_pred_bnb = bnb.fit(X_train, y_train).predict(X_test)
    dectree = DecisionTreeClassifier()
    y_pred_dectree = dectree.fit(X_train, y_train).predict(X_test)

    mo.md(f"""
    # Logistic Regression

        Accuracy score: {accuracy_score(y_test, y_pred_logreg)}

        Precision score: {precision_score(y_test, y_pred_logreg)}

        Confusion matrix:
    ```
            {confusion_matrix(y_test, y_pred_logreg)}
    ```

        Classification report:
    ```
            {classification_report(y_test, y_pred_logreg)}
    ```

    # Bernoulli Naive Bayes

        Accuracy score: {accuracy_score(y_test, y_pred_bnb)}

        Precision score: {precision_score(y_test, y_pred_bnb)}

        Confusion matrix:
    ```
            {confusion_matrix(y_test, y_pred_bnb)}
    ```

        Classification report:
    ```
            {classification_report(y_test, y_pred_bnb)}
    ```

    # Decision Tree Classifier

        Accuracy score: {accuracy_score(y_test, y_pred_dectree)}

        Precision score: {precision_score(y_test, y_pred_dectree)}

        Confusion matrix:
    ```
            {confusion_matrix(y_test, y_pred_dectree)}
    ```

        Classification report:
    ```
            {classification_report(y_test, y_pred_dectree)}
    ```
    """)
    return (
        BernoulliNB,
        DecisionTreeClassifier,
        LogisticRegression,
        X,
        X_test,
        X_train,
        accuracy_score,
        bnb,
        classification_report,
        confusion_matrix,
        dectree,
        logreg,
        precision_score,
        train_test_split,
        y,
        y_pred_bnb,
        y_pred_dectree,
        y_pred_logreg,
        y_test,
        y_train,
    )


@app.cell
def _(dataset_cluster, mo):
    import altair as alt
    chart1 = alt.Chart(dataset_cluster).mark_circle().encode(
        alt.Y('Incidence_Rate_per_100K'),
        alt.X('Mortality_Rate_per_100K'),
        color='Cluster',
    )
    mo.ui.altair_chart(chart1)
    return alt, chart1


@app.cell
def _():
    return


if __name__ == "__main__":
    app.run()