Commit
·
cdffe0b
1
Parent(s):
27db1e5
Add comparison to Decision Tree Classifier.
Browse files
app.py
CHANGED
@@ -47,13 +47,14 @@ def _(pl):
|
|
47 |
|
48 |
@app.cell
|
49 |
def _(mo):
|
50 |
-
mo.md("""##
|
51 |
return
|
52 |
|
53 |
|
54 |
@app.cell
|
55 |
def _(dataset_prior_conditions, mo, pl):
|
56 |
from sklearn.naive_bayes import BernoulliNB
|
|
|
57 |
from sklearn.model_selection import train_test_split
|
58 |
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
59 |
|
@@ -63,8 +64,12 @@ def _(dataset_prior_conditions, mo, pl):
|
|
63 |
)
|
64 |
|
65 |
bnb = BernoulliNB()
|
|
|
66 |
y_pred_priors = bnb.fit(X_train_priors, y_train_priors).predict(X_test_priors)
|
67 |
-
|
|
|
|
|
|
|
68 |
Accuracy : {accuracy_score(y_test_priors, y_pred_priors)}
|
69 |
|
70 |
Confusion Matrix:
|
@@ -78,9 +83,25 @@ def _(dataset_prior_conditions, mo, pl):
|
|
78 |
```
|
79 |
{classification_report(y_test_priors, y_pred_priors)}
|
80 |
```
|
81 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return (
|
83 |
BernoulliNB,
|
|
|
84 |
X_priors_NB,
|
85 |
X_test_priors,
|
86 |
X_train_priors,
|
@@ -88,7 +109,9 @@ def _(dataset_prior_conditions, mo, pl):
|
|
88 |
bnb,
|
89 |
classification_report,
|
90 |
confusion_matrix,
|
|
|
91 |
train_test_split,
|
|
|
92 |
y_pred_priors,
|
93 |
y_priors_NB,
|
94 |
y_test_priors,
|
@@ -97,43 +120,14 @@ def _(dataset_prior_conditions, mo, pl):
|
|
97 |
|
98 |
|
99 |
@app.cell
|
100 |
-
def _(
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
# X_test_priors, y_pred_priors, y_test_priors
|
105 |
-
dataset_result_priors = pl.concat([X_test_priors, y_test_priors, pl.DataFrame({"Predicted Diabetes_binary": y_pred_priors})], how="horizontal")
|
106 |
-
dataset_result_priors1 = dataset_result_priors.select(
|
107 |
-
(pl.col("HighBP") * 8),
|
108 |
-
(pl.col("HighChol") * 4),
|
109 |
-
(pl.col("Stroke") * 2),
|
110 |
-
pl.exclude(["HighBP", "HighChol", "Stroke"])
|
111 |
-
)
|
112 |
-
dataset_result_priors1 = dataset_result_priors1.select(
|
113 |
-
pl.sum_horizontal(pl.col("HighBP", "HighChol", "Stroke", "HeartDiseaseorAttack")),
|
114 |
-
pl.col("Diabetes_binary", "Predicted Diabetes_binary")
|
115 |
-
)
|
116 |
-
dataset_result_priors2 = dataset_result_priors.select(
|
117 |
-
pl.exclude(["Diabetes_binary", "Predicted Diabetes_binary"]),
|
118 |
-
(pl.col("Diabetes_binary") * 2),
|
119 |
-
pl.col("Predicted Diabetes_binary")
|
120 |
-
)
|
121 |
-
dataset_result_priors2 = dataset_result_priors2.select(
|
122 |
-
pl.col("HighBP", "HighChol", "Stroke", "HeartDiseaseorAttack"),
|
123 |
-
pl.sum_horizontal(pl.col("Diabetes_binary", "Predicted Diabetes_binary"))
|
124 |
-
)
|
125 |
-
dataset_result_priors2.head(10)
|
126 |
-
return (
|
127 |
-
alt,
|
128 |
-
dataset_result_priors,
|
129 |
-
dataset_result_priors1,
|
130 |
-
dataset_result_priors2,
|
131 |
-
)
|
132 |
|
133 |
|
134 |
@app.cell
|
135 |
def _(mo):
|
136 |
-
mo.md(r"""# Diabetes Predictor""")
|
137 |
return
|
138 |
|
139 |
|
@@ -165,10 +159,5 @@ def _(bnb, mo, priors_predict):
|
|
165 |
return diabetes_or_not, prediction
|
166 |
|
167 |
|
168 |
-
@app.cell
|
169 |
-
def _():
|
170 |
-
return
|
171 |
-
|
172 |
-
|
173 |
if __name__ == "__main__":
|
174 |
app.run()
|
|
|
47 |
|
48 |
@app.cell
|
49 |
def _(mo):
|
50 |
+
mo.md("""## Testing Classifiers""")
|
51 |
return
|
52 |
|
53 |
|
54 |
@app.cell
|
55 |
def _(dataset_prior_conditions, mo, pl):
|
56 |
from sklearn.naive_bayes import BernoulliNB
|
57 |
+
from sklearn.tree import DecisionTreeClassifier
|
58 |
from sklearn.model_selection import train_test_split
|
59 |
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
60 |
|
|
|
64 |
)
|
65 |
|
66 |
bnb = BernoulliNB()
|
67 |
+
dtc = DecisionTreeClassifier()
|
68 |
y_pred_priors = bnb.fit(X_train_priors, y_train_priors).predict(X_test_priors)
|
69 |
+
y_pred_dtc = dtc.fit(X_train_priors, y_train_priors).predict(X_test_priors)
|
70 |
+
mo.accordion(
|
71 |
+
{
|
72 |
+
"Bernoulli NB Metrics": f"""
|
73 |
Accuracy : {accuracy_score(y_test_priors, y_pred_priors)}
|
74 |
|
75 |
Confusion Matrix:
|
|
|
83 |
```
|
84 |
{classification_report(y_test_priors, y_pred_priors)}
|
85 |
```
|
86 |
+
""",
|
87 |
+
"Decision Tree Classifier": f"""
|
88 |
+
Accuracy : {accuracy_score(y_test_priors, y_pred_dtc)}
|
89 |
+
|
90 |
+
Confusion Matrix:
|
91 |
+
|
92 |
+
```
|
93 |
+
{confusion_matrix(y_test_priors, y_pred_dtc)}
|
94 |
+
```
|
95 |
+
|
96 |
+
Classification Report:
|
97 |
+
|
98 |
+
```
|
99 |
+
{classification_report(y_test_priors, y_pred_dtc)}
|
100 |
+
```
|
101 |
+
"""})
|
102 |
return (
|
103 |
BernoulliNB,
|
104 |
+
DecisionTreeClassifier,
|
105 |
X_priors_NB,
|
106 |
X_test_priors,
|
107 |
X_train_priors,
|
|
|
109 |
bnb,
|
110 |
classification_report,
|
111 |
confusion_matrix,
|
112 |
+
dtc,
|
113 |
train_test_split,
|
114 |
+
y_pred_dtc,
|
115 |
y_pred_priors,
|
116 |
y_priors_NB,
|
117 |
y_test_priors,
|
|
|
120 |
|
121 |
|
122 |
@app.cell
|
123 |
+
def _(mo):
|
124 |
+
mo.md(r"""Looks like Bernoulli Naive Bayes' performs better on this dataset, as even though the Decision Tree Classifier has a bit better accuracy, the other metrics do give a better score on the BNB overall.""")
|
125 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
|
128 |
@app.cell
|
129 |
def _(mo):
|
130 |
+
mo.md(r"""# Diabetes Predictor using BNB""")
|
131 |
return
|
132 |
|
133 |
|
|
|
159 |
return diabetes_or_not, prediction
|
160 |
|
161 |
|
|
|
|
|
|
|
|
|
|
|
162 |
if __name__ == "__main__":
|
163 |
app.run()
|