import marimo | |
__generated_with = "0.11.4" | |
app = marimo.App(width="medium") | |
def _(mo): | |
mo.md("""# Exploration on Smartphone Consumer Trends in India""") | |
return | |
def _(): | |
import marimo as mo | |
import polars as pl | |
dataset_raw = pl.read_csv("dataset/diabetes_binary_health_indicators_BRFSS2015.csv") | |
dataset_raw.head() | |
return dataset_raw, mo, pl | |
def _(dataset_raw): | |
dataset_priors = dataset_raw.select(["Diabetes_binary", "HighBP", "HighChol", "Stroke", "HeartDiseaseorAttack"]) | |
dataset_priors.head() | |
return (dataset_priors,) | |
def _(): | |
from sklearn.naive_bayes import BernoulliNB | |
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report | |
from sklearn.model_selection import train_test_split | |
return ( | |
BernoulliNB, | |
accuracy_score, | |
classification_report, | |
confusion_matrix, | |
train_test_split, | |
) | |
if __name__ == "__main__": | |
app.run() | |