Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,10 +1,106 @@
|
|
| 1 |
---
|
| 2 |
title: README
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: static
|
| 7 |
pinned: false
|
| 8 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
Edit this `README.md` markdown file to author your organization card.
|
|
|
|
| 1 |
---
|
| 2 |
title: README
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: indigo
|
| 6 |
sdk: static
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
+
# Compressed LLM Model Zone
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/) and [LLNL]().
|
| 13 |
+
Credits to Ajay Jaiswal, Jinhao Duan, Zhenyu Zhang, Zhangheng Li, Lu Yin, Shiwei Liu and Junyuan Hong.
|
| 14 |
+
|
| 15 |
+
License: [MIT License](https://opensource.org/license/mit/)
|
| 16 |
+
|
| 17 |
+
Setup environment
|
| 18 |
+
```shell
|
| 19 |
+
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
|
| 20 |
+
pip install transformers==4.31.0
|
| 21 |
+
pip install accelerate
|
| 22 |
+
pip install auto-gptq # for gptq
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
How to use pruned models
|
| 26 |
+
```python
|
| 27 |
+
import torch
|
| 28 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 29 |
+
base_model = 'llama-2-7b'
|
| 30 |
+
comp_method = 'magnitude_unstructured'
|
| 31 |
+
comp_degree = 0.2
|
| 32 |
+
model_path = f'compressed-llm/{base_model}_{comp_method}'
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
+
model_path,
|
| 35 |
+
revision=f's{comp_degree}',
|
| 36 |
+
torch_dtype=torch.float16,
|
| 37 |
+
low_cpu_mem_usage=True,
|
| 38 |
+
device_map="auto"
|
| 39 |
+
)
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
|
| 41 |
+
input_ids = tokenizer('Hello! I am a compressed-LLM chatbot!', return_tensors='pt').input_ids.cuda()
|
| 42 |
+
outputs = model.generate(input_ids, max_new_tokens=128)
|
| 43 |
+
print(tokenizer.decode(outputs[0]))
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
How to use wanda+gptq models
|
| 47 |
+
```python
|
| 48 |
+
from transformers import AutoTokenizer
|
| 49 |
+
from auto_gptq import AutoGPTQForCausalLM
|
| 50 |
+
model_path = 'compressed-llm/llama-2-7b_wanda_2_4_gptq_4bit_128g'
|
| 51 |
+
tokenizer_path = 'meta-llama/Llama-2-7b-hf'
|
| 52 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
| 53 |
+
model_path,
|
| 54 |
+
# inject_fused_attention=False, # or
|
| 55 |
+
disable_exllama=True,
|
| 56 |
+
device_map='auto',
|
| 57 |
+
)
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
|
| 59 |
+
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
|
| 60 |
+
outputs = model.generate(input_ids=input_ids, max_length=128)
|
| 61 |
+
tokenizer.decode(outputs[0])
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
How to use gptq models
|
| 65 |
+
```python
|
| 66 |
+
from transformers import AutoTokenizer
|
| 67 |
+
from auto_gptq import AutoGPTQForCausalLM
|
| 68 |
+
# model_path = 'compressed-llm/llama-2-7b_wanda_2_4_gptq_4bit_128g'
|
| 69 |
+
# tokenizer_path = 'meta-llama/Llama-2-7b-hf'
|
| 70 |
+
model_path = 'compressed-llm/vicuna-7b-v1.3_gptq'
|
| 71 |
+
tokenizer_path = 'lmsys/vicuna-7b-v1.3'
|
| 72 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
| 73 |
+
model_path,
|
| 74 |
+
# inject_fused_attention=False, # or
|
| 75 |
+
disable_exllama=True,
|
| 76 |
+
device_map='auto',
|
| 77 |
+
revision='2bit_128g',
|
| 78 |
+
)
|
| 79 |
+
from transformers import AutoTokenizer
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
|
| 81 |
+
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
|
| 82 |
+
outputs = model.generate(input_ids=input_ids, max_length=128)
|
| 83 |
+
tokenizer.decode(outputs[0])
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
## Citations
|
| 87 |
+
|
| 88 |
+
If you are using models in this hub, please consider citing our papers.
|
| 89 |
+
```bibtex
|
| 90 |
+
@article{jaiswal2023emergence,
|
| 91 |
+
title={The Emergence of Essential Sparsity in Large Pre-trained Models: The Weights that Matter},
|
| 92 |
+
author={Jaiswal, Ajay and Liu, Shiwei and Chen, Tianlong and Wang, Zhangyang},
|
| 93 |
+
journal={arXiv},
|
| 94 |
+
year={2023}
|
| 95 |
+
}
|
| 96 |
+
@article{jaiswal2023compressing,
|
| 97 |
+
title={Compressing LLMs: The Truth is Rarely Pure and Never Simple},
|
| 98 |
+
author={Ajay Jaiswal and Zhe Gan and Xianzhi Du and Bowen Zhang and Zhangyang Wang and Yinfei Yang},
|
| 99 |
+
year={2023},
|
| 100 |
+
journal={arXiv},
|
| 101 |
+
}
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
For any question, please contact [Junyuan Hong](mailto:[email protected]).
|
| 106 |
|
|
|