update app
Browse files- .gitignore +1 -0
- app.py +125 -25
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
app_ref.py
|
app.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import random
|
3 |
from datasets import load_dataset
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
6 |
# # Sample dataset with unique 10-digit IDs
|
7 |
# qa_dataset = {
|
8 |
# "1234567890": {
|
@@ -18,20 +21,52 @@ from datasets import load_dataset
|
|
18 |
# # Add more questions with unique IDs as needed
|
19 |
# }
|
20 |
|
21 |
-
truth_data = load_dataset("commonsense-index-dev/commonsense-candidates", "
|
|
|
|
|
|
|
|
|
22 |
|
23 |
qa_dataset = {}
|
24 |
for item in truth_data:
|
25 |
qa_dataset[item["id"]] = {
|
26 |
"question": item["task"],
|
27 |
"choices": item["choices"],
|
28 |
-
"answer": item["answer"]
|
29 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
def get_random_question():
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
question_data = qa_dataset[question_id]
|
34 |
-
|
|
|
35 |
|
36 |
def get_question_by_id(question_id):
|
37 |
if question_id in qa_dataset:
|
@@ -40,44 +75,109 @@ def get_question_by_id(question_id):
|
|
40 |
else:
|
41 |
return None, "Invalid question ID", []
|
42 |
|
43 |
-
def check_answer(question_id, choice):
|
44 |
correct_answer = qa_dataset[question_id]["answer"]
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
question_id, question, choices = get_question_by_id(question_id)
|
50 |
else:
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
choices_markdown = "\n".join(choices)
|
55 |
-
return question_id, question, choices_markdown,
|
|
|
|
|
|
|
56 |
|
57 |
def show_buttons(choices_markdown):
|
58 |
choices = choices_markdown.split("\n")
|
59 |
visibility = [gr.update(visible=False)] * 10
|
60 |
for i in range(len(choices)):
|
|
|
|
|
61 |
visibility[i] = gr.update(visible=True, value=choices[i])
|
|
|
62 |
return visibility
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
with gr.Blocks() as app:
|
65 |
-
gr.Markdown("#
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
question_id_input = gr.Textbox(label="Enter Question ID", placeholder="leave empty for random sampling")
|
68 |
-
random_button = gr.Button("Retrieve or Random Sample")
|
69 |
question_display = gr.Markdown(visible=True)
|
70 |
choices_markdown = gr.Markdown(visible=False)
|
71 |
choice_buttons = [gr.Button(visible=False) for _ in range(10)]
|
72 |
result_display = gr.Markdown(visible=True)
|
|
|
73 |
|
74 |
-
question_id = gr.
|
75 |
|
76 |
-
question_id_input.submit(fn=load_question, inputs=question_id_input, outputs=[question_id, question_display, choices_markdown, result_display])
|
77 |
-
random_button.click(fn=load_question, outputs=[question_id, question_display, choices_markdown, result_display])
|
78 |
-
choices_markdown.change(fn=show_buttons, inputs=choices_markdown, outputs=choice_buttons)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
for i, button in enumerate(choice_buttons):
|
81 |
-
button.click(fn=check_answer, inputs=[question_id, button], outputs=result_display)
|
82 |
|
83 |
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import random
|
3 |
from datasets import load_dataset
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import uuid
|
7 |
+
from huggingface_hub import HfApi
|
8 |
+
import time
|
9 |
# # Sample dataset with unique 10-digit IDs
|
10 |
# qa_dataset = {
|
11 |
# "1234567890": {
|
|
|
21 |
# # Add more questions with unique IDs as needed
|
22 |
# }
|
23 |
|
24 |
+
truth_data = load_dataset("commonsense-index-dev/commonsense-candidates", "iter7-0520", split="train")
|
25 |
+
|
26 |
+
logs = load_dataset("commonsense-index-dev/DemoFeedback", split="train")
|
27 |
+
|
28 |
+
LAST_LOG_UPDATE = time.time()
|
29 |
|
30 |
qa_dataset = {}
|
31 |
for item in truth_data:
|
32 |
qa_dataset[item["id"]] = {
|
33 |
"question": item["task"],
|
34 |
"choices": item["choices"],
|
35 |
+
"answer": item["answer"]
|
36 |
}
|
37 |
+
if "metadata" in item:
|
38 |
+
qa_dataset[item["id"]]["reason"] = item["metadata"].get("reasoning", "N/A")
|
39 |
+
|
40 |
+
def update_logs():
|
41 |
+
global LAST_LOG_UPDATE
|
42 |
+
global logs
|
43 |
+
if time.time() - LAST_LOG_UPDATE > 1800:
|
44 |
+
# update logs for every 30 minutes
|
45 |
+
logs = load_dataset("commonsense-index-dev/DemoFeedback", split="train")
|
46 |
+
LAST_LOG_UPDATE = time.time()
|
47 |
|
48 |
+
def get_random_question(user_name="Anonymous"):
|
49 |
+
global logs
|
50 |
+
update_logs()
|
51 |
+
# if user_name == "":
|
52 |
+
# user_name = "Anonymous"
|
53 |
+
# question_id = random.choice(list(qa_dataset.keys()))
|
54 |
+
# else:
|
55 |
+
# logs = load_dataset("commonsense-index-dev/DemoFeedback", split="train")
|
56 |
+
feedback_counts = {qid: 0 for qid in qa_dataset.keys()}
|
57 |
+
user_seen_data = set()
|
58 |
+
for item in logs:
|
59 |
+
feedback_counts[item["question_id"]] += 1
|
60 |
+
if item["user_name"] == user_name:
|
61 |
+
user_seen_data.add(item["question_id"])
|
62 |
+
# sample a question that has the least feedback, and if there are multiple, sample randomly
|
63 |
+
min_feedback = min(feedback_counts.values())
|
64 |
+
question_ids = [k for k, v in feedback_counts.items() if v == min_feedback]
|
65 |
+
question_ids = list(set(question_ids) - user_seen_data)
|
66 |
+
question_id = random.choice(question_ids)
|
67 |
question_data = qa_dataset[question_id]
|
68 |
+
reasoning = question_data["reason"]
|
69 |
+
return question_id, question_data["question"], question_data["choices"], reasoning
|
70 |
|
71 |
def get_question_by_id(question_id):
|
72 |
if question_id in qa_dataset:
|
|
|
75 |
else:
|
76 |
return None, "Invalid question ID", []
|
77 |
|
78 |
+
def check_answer(question_id, choice, reasoning):
|
79 |
correct_answer = qa_dataset[question_id]["answer"]
|
80 |
+
text = ""
|
81 |
+
if choice[3:] == correct_answer:
|
82 |
+
text += "### β
Correct!"
|
83 |
+
text += "\n### Reasoning: " + reasoning
|
|
|
84 |
else:
|
85 |
+
text += "### β Incorrect. Try again!"
|
86 |
+
return text
|
87 |
+
|
88 |
+
def load_question(question_id=None, user_name="Anonymous"):
|
89 |
+
question_id, question, choices, reasoning = get_random_question(user_name)
|
90 |
+
question = f"---\n#### QID: {question_id}\n## {question} \n---"
|
91 |
choices_markdown = "\n".join(choices)
|
92 |
+
return question_id, question, choices_markdown, \
|
93 |
+
gr.update(value="", visible=True), reasoning, \
|
94 |
+
gr.update(value="", visible=True), \
|
95 |
+
gr.update(value="Submit your feedback! π", interactive=True)
|
96 |
|
97 |
def show_buttons(choices_markdown):
|
98 |
choices = choices_markdown.split("\n")
|
99 |
visibility = [gr.update(visible=False)] * 10
|
100 |
for i in range(len(choices)):
|
101 |
+
# generate ABCDEFGHIJ labels
|
102 |
+
choices[i] = chr(65 + i) + ") " + choices[i]
|
103 |
visibility[i] = gr.update(visible=True, value=choices[i])
|
104 |
+
|
105 |
return visibility
|
106 |
|
107 |
+
|
108 |
+
def submit_feedback(question_id, user_reason, example_quality, user_name_text):
|
109 |
+
if "N/A" in question_id or "N/A" in example_quality:
|
110 |
+
# send a message to the user to sample an example and select a choice first
|
111 |
+
return {
|
112 |
+
submit_button: {"interactive": True, "__type__": "update", "value": "Submit your feedback! π Please sample an example and select a choice!"},
|
113 |
+
}
|
114 |
+
# create a jsonl file and upload it to hf
|
115 |
+
if user_name_text == "":
|
116 |
+
user_name_text = "Anonymous"
|
117 |
+
feedback_item = {
|
118 |
+
"question_id": question_id,
|
119 |
+
"user_name": user_name_text,
|
120 |
+
"user_reason": user_reason,
|
121 |
+
"example_quality": example_quality,
|
122 |
+
}
|
123 |
+
jsonl_str = json.dumps(feedback_item)
|
124 |
+
api = HfApi()
|
125 |
+
token = os.getenv("HF_TOKEN")
|
126 |
+
if token is None:
|
127 |
+
raise ValueError("Hugging Face token not found. Ensure the HF_TOKEN environment variable is set.")
|
128 |
+
|
129 |
+
# Generate a random filename using UUID
|
130 |
+
filename = f"{uuid.uuid4()}.json"
|
131 |
+
|
132 |
+
# Define the repository
|
133 |
+
repo_id = "commonsense-index-dev/DemoFeedback"
|
134 |
+
|
135 |
+
# Upload the json_str as a file directly to the specified path in your dataset repository
|
136 |
+
api.upload_file(
|
137 |
+
token=token,
|
138 |
+
repo_id=repo_id,
|
139 |
+
repo_type="dataset",
|
140 |
+
path_or_fileobj=jsonl_str.encode("utf-8"), # Convert string to bytes
|
141 |
+
path_in_repo=filename,
|
142 |
+
commit_message=f"{user_name_text}'s feedback on {question_id}",
|
143 |
+
)
|
144 |
+
return {
|
145 |
+
submit_button: {"interactive": False, "__type__": "update", "value": "Submitted! β
\n Please sample the next one."}
|
146 |
+
}
|
147 |
+
|
148 |
+
def refresh_feedback(question_id):
|
149 |
+
return gr.update(value="", visible=True), gr.update(value="", visible=True), gr.update(value="", visible=True)
|
150 |
+
|
151 |
with gr.Blocks() as app:
|
152 |
+
gr.Markdown("# Commonsense Index Data Viewer")
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
# question_id_input = gr.Textbox(label="Enter Question ID", placeholder="leave empty for random sampling")
|
156 |
+
random_button = gr.Button("π² Click here to randomly sample an example")
|
157 |
|
|
|
|
|
158 |
question_display = gr.Markdown(visible=True)
|
159 |
choices_markdown = gr.Markdown(visible=False)
|
160 |
choice_buttons = [gr.Button(visible=False) for _ in range(10)]
|
161 |
result_display = gr.Markdown(visible=True)
|
162 |
+
reasoning_display = gr.Markdown(visible=False)
|
163 |
|
164 |
+
question_id = gr.Textbox(label="Question ID:", interactive=False, visible=False)
|
165 |
|
|
|
|
|
|
|
166 |
|
167 |
+
with gr.Row():
|
168 |
+
with gr.Column(scale=2):
|
169 |
+
reason_textbox = gr.Textbox(label="Reason", placeholder="Please talk why the correct answer is correct and why the others are wrong. If you think this is a bad example, please explain too.", type="text", elem_classes="", max_lines=5, lines=5, show_copy_button=False, visible=True, scale=4, interactive=True)
|
170 |
+
with gr.Column():
|
171 |
+
example_quality = gr.Radio(label="Quality", choices=["Good", "Bad"], interactive=True, visible=True)
|
172 |
+
user_name = gr.Textbox(label="Your username", placeholder="Your username", type="text", elem_classes="", max_lines=1, show_copy_button=False, visible=True, interactive=True, show_label=False)
|
173 |
+
submit_button = gr.Button("Submit your feedback! π", elem_classes="btn_boderline", visible=True, interactive=True)
|
174 |
+
|
175 |
+
|
176 |
+
random_button.click(fn=load_question, inputs=[user_name], outputs=[question_id, question_display, choices_markdown, result_display, reasoning_display, example_quality, submit_button])
|
177 |
+
choices_markdown.change(fn=show_buttons, inputs=choices_markdown, outputs=choice_buttons)
|
178 |
+
question_id.change(fn=refresh_feedback, inputs=[question_id], outputs=[reason_textbox, example_quality])
|
179 |
+
submit_button.click(fn=submit_feedback, inputs=[question_id, reason_textbox, example_quality, user_name], outputs=[submit_button])
|
180 |
for i, button in enumerate(choice_buttons):
|
181 |
+
button.click(fn=check_answer, inputs=[question_id, button, reasoning_display], outputs=result_display)
|
182 |
|
183 |
app.launch()
|