Spaces:
Sleeping
Sleeping
File size: 1,490 Bytes
d22a7f8 475174a d22a7f8 8fb7a79 d22a7f8 8fb7a79 d22a7f8 e740ec1 d22a7f8 8fb7a79 475174a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import streamlit as st
import pandas as pd
from evaluation import evaluate_submission
import os
import datetime
LEADERBOARD_FILE = "leaderboard.csv"
st.title("π Hackathon Leaderboard")
"""
**Welcome to the exercises of reinforcement learning!**
In this exercise we will train two popular deep reinforcement learning agents that you have learned through your courses.
This is the time to put that knowledge to practice!
"""
uploaded_file = st.file_uploader("Upload your submission (.py)", type=["py"])
if uploaded_file:
with open("submission_temp.py", "wb") as f:
f.write(uploaded_file.read())
# Here, you'd validate & evaluate
try:
score = evaluate_submission("submission_temp.py") # Implement in evaluation.py
timestamp = datetime.datetime.now().isoformat()
entry = {"filename": uploaded_file.name, "score": score, "timestamp": timestamp}
# Save to leaderboard
if os.path.exists(LEADERBOARD_FILE):
df = pd.read_csv(LEADERBOARD_FILE)
df = df.append(entry, ignore_index=True)
else:
df = pd.DataFrame([entry])
df.to_csv(LEADERBOARD_FILE, index=False)
st.success(f"Submission scored {score}!")
except Exception as e:
st.error(f"Error: {e}")
# Show leaderboard
if os.path.exists(LEADERBOARD_FILE):
df = pd.read_csv(LEADERBOARD_FILE)
df = df.sort_values(by="score", ascending=False)
st.subheader("π
Leaderboard")
st.dataframe(df)
|