Spaces:
Sleeping
Sleeping
File size: 1,185 Bytes
d22a7f8 8fb7a79 d22a7f8 8fb7a79 d22a7f8 e740ec1 d22a7f8 8fb7a79 d22a7f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import altair as alt
import numpy as np
import pandas as pd
import streamlit as st
LEADERBOARD_FILE = "leaderboard.csv"
st.title("π Hackathon Leaderboard")
"""
**Welcome to the exercises of reinforcement learning!**
In this exercise we will train two popular deep reinforcement learning agents that you have learned through your courses.
This is the time to put that knowledge to practice!
"""
uploaded_file = st.file_uploader("Upload your submission (.py)", type=["py"])
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
indices = np.linspace(0, 1, num_points)
theta = 2 * np.pi * num_turns * indices
radius = indices
x = radius * np.cos(theta)
y = radius * np.sin(theta)
df = pd.DataFrame({
"x": x,
"y": y,
"idx": indices,
"rand": np.random.randn(num_points),
})
st.altair_chart(alt.Chart(df, height=700, width=700)
.mark_point(filled=True)
.encode(
x=alt.X("x", axis=None),
y=alt.Y("y", axis=None),
color=alt.Color("idx", legend=None, scale=alt.Scale()),
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
)) |