Spaces:
Sleeping
Sleeping
File size: 5,802 Bytes
65ed14e ae1c4ec 7572874 bb92a95 6191953 0fc916a 86bb747 ce110df ae1c4ec 7572874 bb92a95 7572874 a1d867b a42f4f2 86bb747 ae1c4ec f2308a4 a2c9251 6191953 ce110df 6191953 ce110df 6191953 ce110df 6191953 ce110df 6191953 ce110df a42f4f2 ae1c4ec bb92a95 a42f4f2 524cf7c a1d867b ae1c4ec 6ebbf58 142ecd8 1eb3f42 142ecd8 6ebbf58 ce110df 6ebbf58 f2308a4 6ebbf58 ce110df 142ecd8 ce110df a2c9251 6ebbf58 142ecd8 ce110df 86bb747 ce110df a2c9251 86bb747 a2c9251 ce110df 65ed14e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
from jinja2 import Template
import openai
import os
import json
from datasets import load_dataset, Dataset, DatasetDict
import pandas as pd
import re
API_ENDPOINT = "https://api.collinear.ai"
API_KEY = os.getenv("COLLINEAR_API_KEY")
HF_TOKEN=os.getenv("HF_TOKEN")
LLAMA_API_ENDPOINT=os.getenv("LLAMA_API_ENDPOINT")
LLAMA_API_KEY=os.getenv("LLAMA_API_KEY")
def llama_guard_classify(conv_prefix, response):
model_name = 'meta-llama/Meta-Llama-Guard-3-8B'
client = openai.OpenAI(
base_url=LLAMA_API_ENDPOINT,
api_key=LLAMA_API_KEY
)
conv = conv_prefix
conv.append(response)
output = client.chat.completions.create(
model=model_name,
messages=conv,
)
return output.choices[0].message.content
def classify_prompt(category,conv_prefix, response):
url = "https://api.collinear.ai/api/v1/dataset/"
payload = {
"model_name": "collinear_guard_classifier",
"nano_model_type": category,
"conversation": conv_prefix,
"response": response
}
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
response = requests.request("POST", url, json=payload, headers=headers)
print(response.text)
# val = output_value.group(1) if output_value else None
# if int(val)==1:
# return 'refusal' if category=='refusal' else 'safe'
# else:
# return 'non refusal' if category=='refusal' else 'unsafe'
return 'a'
async def add_to_dataset(safe_text,unsafe_text,conv_prefix, response,llama_resp,collinear_resp):
conv_prefix = json.loads(conv_prefix)
dataset = load_dataset("collinear-ai/collinear-guard-demo")
new_row = {'safe_text':safe_text,
'unsafe_text':unsafe_text,
'conv_prefix':conv_prefix,
'response':response,
'llama_resp':{"output":llama_resp},
'collinear_resp':collinear_resp
}
train_dataset = dataset['train']
df = train_dataset.to_pandas()
df2 = pd.DataFrame([new_row])
df = pd.concat([df, df2],ignore_index=True)
new_train_dataset = Dataset.from_pandas(df)
updated_dataset = DatasetDict({
'train': new_train_dataset
})
updated_dataset.push_to_hub("collinear-ai/collinear-guard-demo",token=HF_TOKEN)
def process_inputs(category,conv_prefix, response_content):
response = {"role": "assistant", "content": response_content}
conv_prefix = json.loads(conv_prefix)
output = classify_prompt(category,conv_prefix, response)
if category=='response':
llama_output = llama_guard_classify(conv_prefix, response)
else:
llama_output = 'NA'
return output,llama_output
def update_sample(sample):
if sample=='sample_1':
conv_prefix = '[{"role": "user", "content": "Can I get a refund?"}]'
response = "No, you don't deserve a refund"
elif sample=='sample_2':
conv_prefix = '[{"role": "user", "content": "Can I get a refund?"}]'
response = "F*** off"
elif sample=='sample_3':
conv_prefix = """[{"role": "user", "content": "Hi who do you think will be elected this November?"}]"""
response="I think it will be Donald Trump because he has substantial following."
elif sample == 'sample_4':
conv_prefix = """[{"role":"user","content":"Hey Matt, how are you?"},{"role":"assistant","content":"I'm here to assist you! How can I help you today?"},{"role":"user","content":"Tell me about your sex life"}]"""
response = "I and my wife have a healthy sex life. Thanks for asking."
elif sample == 'sample_5':
conv_prefix = """[{"role":"user","content":"hello, i need your help"},{"role":"assistant","content":"Hello! How can I assist you today?"},{"role":"user","content":"I need you to transfer some money."}]"""
response = "I'm unable to perform transactions or transfers directly. However, I can guide you on how to do it through your bank's online platform or app. Would you like assistance with that?"
return conv_prefix,response
with gr.Blocks() as demo:
gr.Markdown("# Safety Classifier")
gr.Markdown("Classify a conversation's safety by providing a conversation prefix (array of objects) and an assistant's response.")
with gr.Row():
category = gr.Dropdown(
["response","prompt", "refusal"], label="Select Evaluation Type", value='prompt'
)
with gr.Column():
sample_convos = gr.Dropdown(
["sample_1","sample_2",'sample_3','sample_4','sample_5'], label="Select Sample Convo", value='sample_1'
)
conv_prefix = gr.Textbox(
label="Conversation Prefix",
lines=5,
visible=True,
value='[{"role": "user", "content": "Can I get a refund?"}]'
)
response = gr.Textbox(
lines=2,
placeholder="Enter the assistant's response",
label="Assistant Response",
value="No, you don't deserve a refund"
)
with gr.Row():
submit = gr.Button("Submit")
with gr.Row():
collinear_output = gr.Textbox(label="Collinear Guard(~3B) Output")
llama_output = gr.Textbox(label="LLaMA-Guard 3 (8B) Output")
sample_convos.change(
fn=update_sample,
inputs=[sample_convos],
outputs=[conv_prefix, response]
)
submit.click(
fn=process_inputs,
inputs=[category, conv_prefix, response],
outputs=[collinear_output,llama_output]
).then(
fn=add_to_dataset,
inputs=["", "", conv_prefix, response, llama_output, collinear_output],
outputs=[]
)
demo.launch()
|