import streamlit as st import os from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain api_key = os.environ['openai_api_key'] def get_insurance_heading(data,insurance_prompt): llm = OpenAI(temperature=0,openai_api_key=api_key) prompt_template = "prompt: " + insurance_prompt + " and article content: {text} " PROMPT = PromptTemplate( template=insurance_prompt, input_variables=["text"] ) chain = LLMChain(llm=llm, prompt=PROMPT) resp = chain.run(text=data) return resp def get_sports_heading(data,sports_prompt): llm = OpenAI(temperature=0,openai_api_key=api_key) prompt_template = "prompt: " + sports_prompt + " and article content: {text} " PROMPT = PromptTemplate( template=sports_prompt, input_variables=["text"] ) chain = LLMChain(llm=llm, prompt=PROMPT) resp = chain.run(text=data) return resp def process_article_content(content,insurance_prompt,sports_prompt): return get_insurance_heading(content,insurance_prompt), get_sports_heading(content,sports_prompt) # Streamlit app def main(): st.title("Health Day Demo") # Input field for article content article_content = st.text_area("Enter Article Content:", "") insurance_prompt = st.text_area("insurance prompt", "") sports_prompt = st.text_area("sports prompt", "") # Process button if st.button("Process"): # Process the article content if article_content: insurance_user, sports_user = process_article_content(article_content,insurance_prompt,sports_prompt) # Display the output st.subheader("Processed Output:") st.title("Insurance User") st.write(f"{insurance_user}") st.title("Sports User") st.write(f"{sports_user}") if __name__ == "__main__": main()