Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
from langchain.llms import OpenAI | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
api_key = os.environ['openai_api_key'] | |
def get_insurance_heading(data,insurance_prompt): | |
llm = OpenAI(temperature=0,openai_api_key=api_key) | |
prompt_template = "prompt: " + insurance_prompt + " and article content: {text} " | |
PROMPT = PromptTemplate( | |
template=insurance_prompt, input_variables=["text"] | |
) | |
chain = LLMChain(llm=llm, prompt=PROMPT) | |
resp = chain.run(text=data) | |
return resp | |
def get_sports_heading(data,sports_prompt): | |
llm = OpenAI(temperature=0,openai_api_key=api_key) | |
prompt_template = "prompt: " + sports_prompt + " and article content: {text} " | |
PROMPT = PromptTemplate( | |
template=sports_prompt, input_variables=["text"] | |
) | |
chain = LLMChain(llm=llm, prompt=PROMPT) | |
resp = chain.run(text=data) | |
return resp | |
def process_article_content(content,insurance_prompt,sports_prompt): | |
return get_insurance_heading(content,insurance_prompt), get_sports_heading(content,sports_prompt) | |
# Streamlit app | |
def main(): | |
st.title("Health Day Demo") | |
# Input field for article content | |
article_content = st.text_area("Enter Article Content:", "") | |
insurance_prompt = st.text_area("insurance prompt", "") | |
sports_prompt = st.text_area("sports prompt", "") | |
# Process button | |
if st.button("Process"): | |
# Process the article content | |
if article_content: | |
insurance_user, sports_user = process_article_content(article_content,insurance_prompt,sports_prompt) | |
# Display the output | |
st.subheader("Processed Output:") | |
st.title("Insurance User") | |
st.write(f"{insurance_user}") | |
st.title("Sports User") | |
st.write(f"{sports_user}") | |
if __name__ == "__main__": | |
main() | |