File size: 2,309 Bytes
d72be0f
f2b0df2
 
 
 
d72be0f
d43f0b6
f2b0df2
 
 
6d37db9
d43f0b6
 
 
6d37db9
d43f0b6
6d37db9
d43f0b6
6d37db9
d43f0b6
 
 
 
 
 
 
6d37db9
d43f0b6
 
 
6d37db9
d43f0b6
6d37db9
d43f0b6
6d37db9
d43f0b6
 
 
 
 
 
 
6d37db9
d43f0b6
6d37db9
d72be0f
 
 
165f08c
d72be0f
 
 
6d37db9
 
 
 
d72be0f
 
 
 
 
6d37db9
d72be0f
 
 
c8739b3
 
d72be0f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import streamlit as st
import os
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain



api_key = os.environ['openai_api_key']

def get_insurance_heading(data,insurance_prompt):

    llm = OpenAI(temperature=0,openai_api_key=api_key)

    # prompt_template = """this is article content and my user is insurance industry now give me user specific or we can personalize heading hook line for article, which can include something related to the industry with respect to the content and need only article heading nothing else

    # article content: {text} """
    PROMPT = PromptTemplate(
        template=insurance_prompt, input_variables=["text"]
    )
    chain = LLMChain(llm=llm, prompt=PROMPT)
    resp = chain.run(text=data)

    return resp


def get_sports_heading(data,sports_prompt):

    llm = OpenAI(temperature=0,openai_api_key=api_key)

    # prompt_template = """this is article content and my user is sports industry now give me user specific or we can personalize heading hook line for article, which can include something related to the industry with respect to the content and need only article heading nothing else

    # article content: {text} """
    PROMPT = PromptTemplate(
        template=sports_prompt, input_variables=["text"]
    )
    chain = LLMChain(llm=llm, prompt=PROMPT)
    resp = chain.run(text=data)

    return resp


def process_article_content(content,insurance_prompt,sports_prompt):

    return get_insurance_heading(content,insurance_prompt), get_sports_heading(content,sports_prompt)

# Streamlit app
def main():
    st.title("Health Day Demo")

    # Input field for article content
    article_content = st.text_area("Enter Article Content:", "")
    insurance_prompt = st.text_area("insurance prompt", "")
    sports_prompt = st.text_area("sports prompt", "")
    


    # Process button
    if st.button("Process"):
        # Process the article content
        if article_content:
            insurance_user, sports_user = process_article_content(article_content,insurance_prompt,sports_prompt)

            # Display the output
            st.subheader("Processed Output:")
            st.write(f"{insurance_user}")
            st.write(f"{sports_user}")

if __name__ == "__main__":
    main()