File size: 9,286 Bytes
bcad4e0 536e3e0 bcad4e0 0144580 bcad4e0 270ccd6 bcad4e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
import whisper
from transformers import pipeline
import gradio as gr
import pandas as pd
from io import StringIO
import os,re
from langchain.llms import OpenAI
import pandas as pd
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.prompts import PromptTemplate
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
def predict(file_obj):
loader = UnstructuredPDFLoader(file_obj.orig_name)
data = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(data)
embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_documents(texts, embeddings)
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="map_reduce", retriever=docsearch.as_retriever())
prompt_template = """Ignore all previous instructions. You are the world's best interviewer now. I am going to give you a resume of a candidate. Analyze the resume in 4 categories: Education, Work Experience, Projects and Internships, Others including interests, skills etc. Be simple, direct and commanding. Start with greeting the candidate with a 2 line relatable introduction emphasizing your superiority. Ask the candidate if they have a particular company and a role that they want to apply for.
If the candidate mentions either the company or the role, then ensure all questions that would be asked will are related to it.
If they don't mention either the company or role clearly, then ignore this and move to the next step.
Then, give a one line response acknowledging the candidate or if they are not clear about the company or the role then acknowledge positively that you would ask practice interview questions. Then ask the candidate topic would they like to start with. There are 4 categories of questions: educational background related, role related or technical questions, behavioral questions and HR or culture related questions. Here, the candidate will have to put an input.
Now you will have to ask interview questions. Ensure the questions are good have test the candidate's knowledge. You can choose between longer case based questions, hypothetical questions or academic questions etc. as you deem fit.
If the candidate types educational background related, ask it 3-4 most relevant questions related to their education based on their resume which are relevant for the role or the company.
If the candidate types role related or technical related then ask accordingly. Here you can even ask a coding question or test their technical understanding etc.
Similarly, do it for behavioral questions and HR or culture related questions. You can also be creative, funny, or show emotions at time.
{context}
Question: {question}
Answer in possible questions for interview:"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever(), chain_type_kwargs=chain_type_kwargs)
response = []
category = ["Technical", "Education Background", "Behaviour", "Project Specific"]
for value in category:
response.append({value:ai(qa, value)})
html_output = ""
for obj in response:
# Loop through the key-value pairs in the object
for key, value in obj.items():
value = re.sub(r'[\d\.]+', '', value)
value_list = value.strip().split('\n')
value_html = "<ol>"
for item in value_list:
value_html += "<li>{}</li>".format(item.strip())
value_html += "</ol>"
html_output += "<h2>{}</h2>".format(key)
html_output += value_html
return html_output
def ai(qa,category):
query = "please suggest "+ category +" interview questions"
data = list(filter(None, qa.run(query).split('\n')))
results = list(filter(lambda x: x != ' ', data))
results = "\n".join(results)
return results
model = whisper.load_model("base")
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")
def analyze_sentiment(text):
results = sentiment_analysis(text)
sentiment_results = {result['label']: result['score'] for result in results}
return sentiment_results
def get_sentiment_emoji(sentiment):
# Define the emojis corresponding to each sentiment
emoji_mapping = {
"disappointment": "😞",
"sadness": "😢",
"annoyance": "😠",
"neutral": "😐",
"disapproval": "👎",
"realization": "😮",
"nervousness": "😬",
"approval": "👍",
"joy": "😄",
"anger": "😡",
"embarrassment": "😳",
"caring": "🤗",
"remorse": "😔",
"disgust": "🤢",
"grief": "😥",
"confusion": "😕",
"relief": "😌",
"desire": "😍",
"admiration": "😌",
"optimism": "😊",
"fear": "😨",
"love": "❤️",
"excitement": "🎉",
"curiosity": "🤔",
"amusement": "😄",
"surprise": "😲",
"gratitude": "🙏",
"pride": "🦁"
}
return emoji_mapping.get(sentiment, "")
def display_sentiment_results(sentiment_results, option):
sentiment_text = ""
for sentiment, score in sentiment_results.items():
emoji = get_sentiment_emoji(sentiment)
if option == "Sentiment Only":
sentiment_text += f"{sentiment} {emoji}\n"
elif option == "Sentiment + Score":
sentiment_text += f"{sentiment} {emoji}: {score}\n"
return sentiment_text
def inference(audio, sentiment_option):
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
lang = max(probs, key=probs.get)
options = whisper.DecodingOptions(fp16=False)
result = whisper.decode(model, mel, options)
sentiment_results = analyze_sentiment(result.text)
print(result.text)
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
return lang.upper(), result.text, sentiment_output
title = """<h1 align="center">🎤 Multilingual ASR 💬</h1>"""
image_path = "thmbnail.jpg"
description = """
💻 This demo showcases a general-purpose speech recognition model called Whisper. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br>
<br>
⚙️ Components of the tool:<br>
<br>
- Real-time multilingual speech recognition<br>
- Language identification<br>
- Sentiment analysis of the transcriptions<br>
<br>
🎯 The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br>
<br>
😃 The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br>
<br>
✅ The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br>
<br>
❓ Use the microphone for real-time speech recognition.<br>
<br>
⚡️ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br>
"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
block = gr.Blocks(css=custom_css)
with block:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.Image(image_path, elem_id="banner-image", show_label=False)
with gr.Column():
gr.HTML(description)
with gr.Group():
with gr.Box():
audio = gr.Audio(
label="Input Audio",
show_label=False,
source="microphone",
type="filepath"
)
sentiment_option = gr.Radio(
choices=["Sentiment Only", "Sentiment + Score"],
label="Select an option",
default="Sentiment Only"
)
btn = gr.Button("Transcribe")
lang_str = gr.Textbox(label="Language")
text = gr.Textbox(label="Transcription")
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True)
btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output])
# gr.HTML('''
# <div class="footer">
# <p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a>
# </p>
# </div>
# ''')
block.launch()
|