Spaces:
Sleeping
Sleeping
Commit
·
1ea7ab0
1
Parent(s):
20a0847
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,81 @@ from transformers import pipeline
|
|
5 |
model = whisper.load_model("base")
|
6 |
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def analyze_sentiment(text):
|
9 |
results = sentiment_analysis(text)
|
10 |
sentiment_results = {result['label']: result['score'] for result in results}
|
|
|
5 |
model = whisper.load_model("base")
|
6 |
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")
|
7 |
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import whisper
|
11 |
+
from transformers import pipeline
|
12 |
+
import gradio as gr
|
13 |
+
import pandas as pd
|
14 |
+
from io import StringIO
|
15 |
+
import os,re
|
16 |
+
from langchain.llms import OpenAI
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
from langchain.document_loaders import UnstructuredPDFLoader
|
20 |
+
|
21 |
+
from langchain.prompts import PromptTemplate
|
22 |
+
from langchain.chains import LLMChain
|
23 |
+
|
24 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
25 |
+
from langchain.vectorstores import Chroma
|
26 |
+
from langchain.text_splitter import CharacterTextSplitter
|
27 |
+
from langchain.llms import OpenAI
|
28 |
+
from langchain.chains import RetrievalQA
|
29 |
+
from langchain.document_loaders import TextLoader
|
30 |
+
from langchain.prompts import PromptTemplate
|
31 |
+
from langchain.callbacks.stdout import StdOutCallbackHandler
|
32 |
+
from langchain.chat_models.openai import ChatOpenAI
|
33 |
+
from langchain.prompts.prompt import PromptTemplate
|
34 |
+
|
35 |
+
from langchain.llms import OpenAI
|
36 |
+
from langchain.prompts import PromptTemplate
|
37 |
+
from langchain.chains import LLMChain
|
38 |
+
model = whisper.load_model("base")
|
39 |
+
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")
|
40 |
+
|
41 |
+
def predict(text):
|
42 |
+
|
43 |
+
prompt_template = """Ignore all previous instructions. You are the world's hearing aid company markerting agent.
|
44 |
+
I am going to give you a text of a customer. Analyze it and you have 4 products in list which you have to suggest to the customer:
|
45 |
+
ampli-mini it is mainly works for Maximum comfort and discretion, ampli-connect it is mainly works for Connected to the things you love,
|
46 |
+
ampli-energy it is mainly works for Full of energy, like you, ampli-easy it is mainly works for Allow yourself to hear well.
|
47 |
+
You can also be creative, funny, or show emotions at time.
|
48 |
+
also share the book a appointment link of your company https://www.amplifon.com/uk/book-an-appointment
|
49 |
+
Question: {question}
|
50 |
+
Product details:"""
|
51 |
+
|
52 |
+
prompt_template_lang = """
|
53 |
+
You are the world's best languages translator. Will give you some text or paragraph which you have to convert into Tamil, Hindi, Kannada
|
54 |
+
and French.
|
55 |
+
Input Text: {text}
|
56 |
+
Tamil:
|
57 |
+
Hindi:
|
58 |
+
Kannada:
|
59 |
+
French:
|
60 |
+
"""
|
61 |
+
PROMPT = PromptTemplate(
|
62 |
+
template=prompt_template, input_variables=["question"]
|
63 |
+
)
|
64 |
+
PROMPT_lang = PromptTemplate(
|
65 |
+
template=prompt_template_lang, input_variables=["text"]
|
66 |
+
)
|
67 |
+
|
68 |
+
llm = OpenAI()
|
69 |
+
|
70 |
+
chain = LLMChain(llm=llm, prompt=PROMPT)
|
71 |
+
chain_lang = LLMChain(llm=llm, prompt=PROMPT_lang)
|
72 |
+
|
73 |
+
resp = chain.run(question=text)
|
74 |
+
resp_lang = chain_lang.run(text=resp)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
return [resp, resp_lang]
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
def analyze_sentiment(text):
|
84 |
results = sentiment_analysis(text)
|
85 |
sentiment_results = {result['label']: result['score'] for result in results}
|