Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import statsmodels.api as sm
|
4 |
+
from sklearn.preprocessing import StandardScaler
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
with open ("scaled_obj.pkl", "rb") as f:
|
8 |
+
sc_object = pickle.load(f)
|
9 |
+
|
10 |
+
with open ("scaled_model.pkl", "rb") as f:
|
11 |
+
lin_model_object = pickle.load(f)
|
12 |
+
|
13 |
+
def fn_predict(Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees):
|
14 |
+
df = np.array([[Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees]])
|
15 |
+
scaled_new_data = sc_object.transform(df)
|
16 |
+
|
17 |
+
predictions = lin_model_object.predict(scaled_new_data)
|
18 |
+
return predictions
|
19 |
+
|
20 |
+
# Define Gradio interface
|
21 |
+
iface = gr.Interface(
|
22 |
+
fn=fn_predict,
|
23 |
+
inputs=[
|
24 |
+
gr.Number(label="Total Revenue"),
|
25 |
+
gr.Number(label="Operating Cost"),
|
26 |
+
gr.Number(label="Total Assets"),
|
27 |
+
gr.Number(label="Total Liabilities"),
|
28 |
+
gr.Number(label="Stock Price"),
|
29 |
+
gr.Number(label="Market Cap"),
|
30 |
+
gr.Number(label="EBITDA"),
|
31 |
+
gr.Number(label="R&D Expenses"),
|
32 |
+
gr.Number(label="Number of Employees")
|
33 |
+
],
|
34 |
+
outputs=gr.Textbox()
|
35 |
+
)
|
36 |
+
|
37 |
+
# Launch the application
|
38 |
+
iface.launch()
|