coeuslearning commited on
Commit
f81b1c7
·
verified ·
1 Parent(s): e946c07

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import statsmodels.api as sm
4
+ from sklearn.preprocessing import StandardScaler
5
+ import gradio as gr
6
+
7
+ with open ("scaled_obj.pkl", "rb") as f:
8
+ sc_object = pickle.load(f)
9
+
10
+ with open ("scaled_model.pkl", "rb") as f:
11
+ lin_model_object = pickle.load(f)
12
+
13
+ def fn_predict(Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees):
14
+ df = np.array([[Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees]])
15
+ scaled_new_data = sc_object.transform(df)
16
+
17
+ predictions = lin_model_object.predict(scaled_new_data)
18
+ return predictions
19
+
20
+ # Define Gradio interface
21
+ iface = gr.Interface(
22
+ fn=fn_predict,
23
+ inputs=[
24
+ gr.Number(label="Total Revenue"),
25
+ gr.Number(label="Operating Cost"),
26
+ gr.Number(label="Total Assets"),
27
+ gr.Number(label="Total Liabilities"),
28
+ gr.Number(label="Stock Price"),
29
+ gr.Number(label="Market Cap"),
30
+ gr.Number(label="EBITDA"),
31
+ gr.Number(label="R&D Expenses"),
32
+ gr.Number(label="Number of Employees")
33
+ ],
34
+ outputs=gr.Textbox()
35
+ )
36
+
37
+ # Launch the application
38
+ iface.launch()