Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,47 +2,46 @@ import torch
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
-
model_id = "openai-community/gpt2"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
model.to(device)
|
10 |
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
def respond(
|
14 |
if history is None:
|
15 |
history = []
|
16 |
|
17 |
-
# Формируем контекст
|
18 |
-
prompt =
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
24 |
|
25 |
with torch.no_grad():
|
26 |
outputs = model.generate(
|
27 |
**inputs,
|
28 |
-
max_new_tokens=
|
29 |
-
pad_token_id=tokenizer.eos_token_id,
|
30 |
-
eos_token_id=tokenizer.eos_token_id,
|
31 |
do_sample=False,
|
|
|
|
|
32 |
)
|
33 |
|
34 |
-
#
|
35 |
-
generated_text = tokenizer.decode(outputs[0]
|
36 |
-
|
37 |
-
history.append((user_message, generated_text))
|
38 |
-
return history, history
|
39 |
-
|
40 |
-
with gr.Blocks() as demo:
|
41 |
-
chatbot = gr.Chatbot()
|
42 |
-
message = gr.Textbox(placeholder="Введите вопрос...")
|
43 |
-
state = gr.State([])
|
44 |
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
+
model_id = "openai-community/gpt2" # если нужен GPT-2 community версия
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
8 |
+
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model.to(device)
|
11 |
|
12 |
+
context = """
|
13 |
+
Университет Иннополис был основан в 2012 году. Это современный вуз в России,
|
14 |
+
специализирующийся на IT и робототехнике, расположенный в городе Иннополис, Татарстан.
|
15 |
+
"""
|
16 |
|
17 |
+
def respond(message, history=None):
|
18 |
if history is None:
|
19 |
history = []
|
20 |
|
21 |
+
# Формируем промпт — контекст + вопрос + "Ответ:"
|
22 |
+
prompt = (
|
23 |
+
f"Контекст: {context}\n"
|
24 |
+
f"Вопрос: {message}\n"
|
25 |
+
"Ответ:"
|
26 |
+
)
|
27 |
|
28 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
29 |
|
30 |
with torch.no_grad():
|
31 |
outputs = model.generate(
|
32 |
**inputs,
|
33 |
+
max_new_tokens=100,
|
|
|
|
|
34 |
do_sample=False,
|
35 |
+
eos_token_id=tokenizer.eos_token_id, # Может отсутствовать у GPT-2, можно убрать
|
36 |
+
pad_token_id=tokenizer.eos_token_id, # Чтобы избежать warning
|
37 |
)
|
38 |
|
39 |
+
# Декодируем срез outputs после длины входа — берем только сгенерированное продолжение
|
40 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
+
answer = generated_text[len(prompt):].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
history.append((message, answer))
|
44 |
+
return history
|
45 |
|
46 |
+
iface = gr.ChatInterface(fn=respond, title="Innopolis Q&A (GPT-2)")
|
47 |
+
iface.launch()
|