Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,9 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
6 |
import gradio as gr
|
7 |
from fastapi import FastAPI
|
8 |
from pydantic import BaseModel
|
|
|
9 |
|
10 |
-
# Модель
|
11 |
model_id = "sberbank-ai/rugpt3medium_based_on_gpt2"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
13 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
@@ -24,6 +25,7 @@ context = (
|
|
24 |
def respond(message, history=None):
|
25 |
prompt = f"Прочитай текст и ответь на вопрос:\n\n{context}\n\nВопрос: {message}\nОтвет:"
|
26 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
|
|
27 |
with torch.no_grad():
|
28 |
output_ids = model.generate(
|
29 |
input_ids,
|
@@ -33,17 +35,20 @@ def respond(message, history=None):
|
|
33 |
do_sample=True,
|
34 |
pad_token_id=tokenizer.eos_token_id
|
35 |
)
|
|
|
36 |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
37 |
if "Ответ:" in output:
|
38 |
answer = output.split("Ответ:")[-1].strip()
|
39 |
else:
|
40 |
answer = output[len(prompt):].strip()
|
|
|
41 |
return answer
|
42 |
|
43 |
-
# Gradio интерфейс
|
44 |
-
|
45 |
|
46 |
-
# API
|
47 |
app = FastAPI()
|
48 |
|
49 |
class QuestionRequest(BaseModel):
|
@@ -53,5 +58,6 @@ class QuestionRequest(BaseModel):
|
|
53 |
def ask(request: QuestionRequest):
|
54 |
return {"answer": respond(request.question)}
|
55 |
|
56 |
-
#
|
57 |
-
|
|
|
|
6 |
import gradio as gr
|
7 |
from fastapi import FastAPI
|
8 |
from pydantic import BaseModel
|
9 |
+
import uvicorn
|
10 |
|
11 |
+
# === Модель ===
|
12 |
model_id = "sberbank-ai/rugpt3medium_based_on_gpt2"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
25 |
def respond(message, history=None):
|
26 |
prompt = f"Прочитай текст и ответь на вопрос:\n\n{context}\n\nВопрос: {message}\nОтвет:"
|
27 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
28 |
+
|
29 |
with torch.no_grad():
|
30 |
output_ids = model.generate(
|
31 |
input_ids,
|
|
|
35 |
do_sample=True,
|
36 |
pad_token_id=tokenizer.eos_token_id
|
37 |
)
|
38 |
+
|
39 |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
40 |
+
|
41 |
if "Ответ:" in output:
|
42 |
answer = output.split("Ответ:")[-1].strip()
|
43 |
else:
|
44 |
answer = output[len(prompt):].strip()
|
45 |
+
|
46 |
return answer
|
47 |
|
48 |
+
# === Gradio интерфейс ===
|
49 |
+
chat_ui = gr.ChatInterface(fn=respond, title="Иннополис Бот")
|
50 |
|
51 |
+
# === FastAPI для API ===
|
52 |
app = FastAPI()
|
53 |
|
54 |
class QuestionRequest(BaseModel):
|
|
|
58 |
def ask(request: QuestionRequest):
|
59 |
return {"answer": respond(request.question)}
|
60 |
|
61 |
+
# === Mount Gradio UI на FastAPI ===
|
62 |
+
# Этот объект должен быть экспортирован как `demo`
|
63 |
+
demo = gr.mount_gradio_app(app, chat_ui, path="/")
|