Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
|
|
2 |
from pydantic import BaseModel
|
3 |
-
|
4 |
-
import torch
|
5 |
-
|
6 |
-
app = FastAPI()
|
7 |
|
8 |
model_id = "sberbank-ai/rugpt3medium_based_on_gpt2"
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
model.to(device)
|
13 |
|
@@ -17,12 +22,8 @@ context = (
|
|
17 |
"расположенный в городе Иннополис, Татарстан.\n"
|
18 |
)
|
19 |
|
20 |
-
|
21 |
-
message
|
22 |
-
|
23 |
-
@app.post("/ask")
|
24 |
-
def ask(q: Question):
|
25 |
-
prompt = f"{context}\nВопрос: {q.message}\nОтвет:"
|
26 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
27 |
|
28 |
with torch.no_grad():
|
@@ -35,10 +36,37 @@ def ask(q: Question):
|
|
35 |
pad_token_id=tokenizer.eos_token_id
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
else:
|
42 |
-
answer =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
return {"answer": answer}
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0" # отключаем нестабильную загрузку
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
from fastapi import FastAPI
|
7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
8 |
from pydantic import BaseModel
|
9 |
+
import uvicorn
|
|
|
|
|
|
|
10 |
|
11 |
model_id = "sberbank-ai/rugpt3medium_based_on_gpt2"
|
12 |
+
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
15 |
+
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
model.to(device)
|
18 |
|
|
|
22 |
"расположенный в городе Иннополис, Татарстан.\n"
|
23 |
)
|
24 |
|
25 |
+
def respond(message: str) -> str:
|
26 |
+
prompt = f"Прочитай текст и ответь на вопрос:\n\n{context}\n\nВопрос: {message}\nОтвет:"
|
|
|
|
|
|
|
|
|
27 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
28 |
|
29 |
with torch.no_grad():
|
|
|
36 |
pad_token_id=tokenizer.eos_token_id
|
37 |
)
|
38 |
|
39 |
+
full_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
40 |
+
|
41 |
+
if "Ответ:" in full_output:
|
42 |
+
answer = full_output.split("Ответ:")[-1].strip()
|
43 |
else:
|
44 |
+
answer = full_output[len(prompt):].strip()
|
45 |
+
|
46 |
+
return answer
|
47 |
+
|
48 |
+
# FastAPI app
|
49 |
+
app = FastAPI(title="Иннополис бот API")
|
50 |
+
|
51 |
+
# Чтобы Unity или браузеры могли обращаться, разрешим CORS (подстрой по своему домену)
|
52 |
+
app.add_middleware(
|
53 |
+
CORSMiddleware,
|
54 |
+
allow_origins=["*"], # или укажи нужный адрес, например ["http://localhost:3000"]
|
55 |
+
allow_credentials=True,
|
56 |
+
allow_methods=["*"],
|
57 |
+
allow_headers=["*"],
|
58 |
+
)
|
59 |
+
|
60 |
+
class QuestionRequest(BaseModel):
|
61 |
+
question: str
|
62 |
|
63 |
+
class AnswerResponse(BaseModel):
|
64 |
+
answer: str
|
65 |
+
|
66 |
+
@app.post("/api/ask", response_model=AnswerResponse)
|
67 |
+
def ask_question(request: QuestionRequest):
|
68 |
+
answer = respond(request.question)
|
69 |
return {"answer": answer}
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
uvicorn.run("app:app", host="0.0.0.0", port=8000)
|