Spaces:
Running
Running
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
model_id = "cody82/unitrip" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
system_message = "Ты — умный помощник по Университету Иннополис." | |
def respond(user_message, history): | |
if history is None: | |
history = [] | |
# Формируем полный контекст (если нужно) | |
prompt = system_message + "\n" | |
for user_text, bot_text in history: | |
prompt += f"User: {user_text}\nAssistant: {bot_text}\n" | |
prompt += f"User: {user_message}\nAssistant:" | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=150, | |
pad_token_id=tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
do_sample=False, | |
) | |
generated_text = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True).strip() | |
history.append((user_message, generated_text)) | |
return history, history | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
message = gr.Textbox(placeholder="Введите вопрос...") | |
state = gr.State([]) # История сообщений | |
message.submit(respond, inputs=[message, state], outputs=[chatbot, state]) | |
message.submit(lambda: "", None, message) # Очистить поле ввода после отправки | |
demo.launch(share=True) | |