Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,40 +1,52 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
| 4 |
|
| 5 |
-
# Load
|
| 6 |
model_name = "codewithdark/latent-recurrent-depth-lm"
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
model.to(device).eval()
|
| 11 |
|
| 12 |
-
# Define inference
|
| 13 |
-
def chat_with_model(input_text,
|
| 14 |
-
|
| 15 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
| 16 |
-
with torch.no_grad():
|
| 17 |
-
output = model.generate(input_ids, max_length=512)
|
| 18 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 19 |
-
return response
|
| 20 |
-
return "Model not available yet!"
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
with gr.Blocks() as demo:
|
| 24 |
gr.Markdown("# 🤖 Chat with Latent Recurrent Depth LM")
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
label="
|
| 29 |
-
|
| 30 |
-
|
| 31 |
|
| 32 |
-
text_input = gr.Textbox(label="Enter your message")
|
| 33 |
submit_button = gr.Button("Generate Response")
|
| 34 |
output_text = gr.Textbox(label="Model Response")
|
| 35 |
|
| 36 |
-
submit_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
# Launch
|
| 39 |
if __name__ == "__main__":
|
| 40 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel
|
| 4 |
|
| 5 |
+
# Load tokenizer and model
|
| 6 |
model_name = "codewithdark/latent-recurrent-depth-lm"
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
model.to(device).eval()
|
| 11 |
|
| 12 |
+
# Define function for inference
|
| 13 |
+
def chat_with_model(input_text, num_iterations, max_tokens, temperature, top_k):
|
| 14 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
generated_ids = model.generate(
|
| 18 |
+
input_ids,
|
| 19 |
+
max_length=max_tokens,
|
| 20 |
+
num_iterations=num_iterations, # Assuming the model supports it
|
| 21 |
+
temperature=temperature,
|
| 22 |
+
top_k=top_k
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
| 26 |
+
return response
|
| 27 |
+
|
| 28 |
+
# Gradio UI
|
| 29 |
with gr.Blocks() as demo:
|
| 30 |
gr.Markdown("# 🤖 Chat with Latent Recurrent Depth LM")
|
| 31 |
+
|
| 32 |
+
with gr.Row():
|
| 33 |
+
text_input = gr.Textbox(label="Enter your message")
|
| 34 |
|
| 35 |
+
with gr.Row():
|
| 36 |
+
num_iterations = gr.Slider(1, 20, step=1, value=10, label="Number of Iterations")
|
| 37 |
+
max_tokens = gr.Slider(10, 200, step=10, value=50, label="Max Tokens")
|
| 38 |
+
temperature = gr.Slider(0.1, 1.0, step=0.1, value=0.5, label="Temperature")
|
| 39 |
+
top_k = gr.Slider(10, 100, step=10, value=50, label="Top-K Sampling")
|
| 40 |
|
|
|
|
| 41 |
submit_button = gr.Button("Generate Response")
|
| 42 |
output_text = gr.Textbox(label="Model Response")
|
| 43 |
|
| 44 |
+
submit_button.click(
|
| 45 |
+
fn=chat_with_model,
|
| 46 |
+
inputs=[text_input, num_iterations, max_tokens, temperature, top_k],
|
| 47 |
+
outputs=output_text
|
| 48 |
+
)
|
| 49 |
|
| 50 |
+
# Launch Gradio app
|
| 51 |
if __name__ == "__main__":
|
| 52 |
demo.launch()
|