Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModel | |
# Load tokenizer and model | |
model_name = "codewithdark/latent-recurrent-depth-lm" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device).eval() | |
# Define function for inference | |
def chat_with_model(input_text, num_iterations, max_tokens, temperature, top_k): | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
input_ids, | |
max_length=max_tokens, | |
num_iterations=num_iterations, # Assuming the model supports it | |
temperature=temperature, | |
top_k=top_k | |
) | |
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
response = response.replace('Ġ','') | |
return response | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# 🤖 Chat with Latent Recurrent Depth LM") | |
with gr.Row(): | |
text_input = gr.Textbox(label="Enter your message") | |
with gr.Row(): | |
num_iterations = gr.Slider(1, 20, step=1, value=10, label="Number of Iterations") | |
max_tokens = gr.Slider(10, 200, step=10, value=50, label="Max Tokens") | |
temperature = gr.Slider(0.1, 1.0, step=0.1, value=0.5, label="Temperature") | |
top_k = gr.Slider(10, 100, step=10, value=50, label="Top-K Sampling") | |
submit_button = gr.Button("Generate Response") | |
output_text = gr.Textbox(label="Model Response") | |
submit_button.click( | |
fn=chat_with_model, | |
inputs=[text_input, num_iterations, max_tokens, temperature, top_k], | |
outputs=output_text | |
) | |
# Launch Gradio app | |
if __name__ == "__main__": | |
demo.launch() | |