File size: 1,622 Bytes
ab9f5d8
 
 
 
 
 
 
 
 
 
 
 
 
 
95a8cb6
ab9f5d8
 
 
 
 
 
 
 
 
 
 
 
 
 
b7abf3f
 
 
 
 
 
 
 
 
 
 
ab9f5d8
 
 
 
 
b7abf3f
ab9f5d8
 
 
 
c72bd11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from diffusers import DiffusionPipeline
import torch
import re
from PIL import Image
import io
from dotenv import load_dotenv
import os

load_dotenv()

# Ensure GPU is used if available
device = "cuda" if torch.cuda.is_available() else "cpu"


pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
pipeline = pipeline.to(device)

def generate_image_prompts(script):
    # Split the script into sentences
    sentences = re.split(r'(?<=[.!?]) +', script)
    
    # Generate prompts for each sentence
    prompts = []
    for sentence in sentences:
        if sentence.strip():  # Ensure the sentence is not empty
            prompts.append(sentence.strip())
    
    return prompts

def hf_pipeline(prompt):
    API_URL = "https://api-inference.huggingface.co/models/Shakker-Labs/AWPortrait-FL"
    headers = {"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}"}

    response = requests.post(API_URL, headers=headers, json={"inputs": prompt})

    if response.status_code == 200:
        return Image.open(io.BytesIO(response.content))  # Return the image directly
    else:
        raise Exception(f"Failed to generate image. Status code: {response.status_code}, {response.text}")

def generate_images(prompts):
    image_files = []
    for idx, prompt in enumerate(prompts):
        print(f"Generating image for prompt: {prompt}")
        # Ensure the prompt is processed on the correct device
        image = hf_pipeline(prompt).images[0]
        filename = f"generated_image_{idx}.png"
        image.save(filename)
        image_files.append(filename)
    
    return image_files