File size: 18,270 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
# --------------------------------------------------------
# Based on BEiT, timm, DINO and DeiT code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
from functools import partial

import math
import warnings
import numpy as np
import collections.abc
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from itertools import repeat


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
            "The distribution of values may be incorrect.",
            stacklevel=2,
        )

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.0))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))

    return parse


to_2tuple = _ntuple(2)


def drop_path(x, drop_prob: float = 0.0, training: bool = False):
    """
    Adapted from timm codebase
    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


def _cfg(url="", **kwargs):
    return {
        "url": url,
        "num_classes": 400,
        "input_size": (3, 224, 224),
        "pool_size": None,
        "crop_pct": 0.9,
        "interpolation": "bicubic",
        "mean": (0.5, 0.5, 0.5),
        "std": (0.5, 0.5, 0.5),
        **kwargs,
    }


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class Mlp(nn.Module):

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        # x = self.drop(x)
        # commit this for the orignal BERT implement
        x = self.fc2(x)
        x = self.drop(x)
        return x


class CosAttention(nn.Module):

    def __init__(
        self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, attn_head_dim=None
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        # self.scale = qk_scale or head_dim**-0.5
        # DO NOT RENAME [self.scale] (for no weight decay)
        if qk_scale is None:
            self.scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
        else:
            self.scale = qk_scale

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)

        # torch.log(torch.tensor(1. / 0.01)) = 4.6052
        logit_scale = torch.clamp(self.scale, max=4.6052).exp()

        attn = attn * logit_scale

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)

        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Attention(nn.Module):

    def __init__(
        self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, attn_head_dim=None
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = q @ k.transpose(-2, -1)

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)

        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        init_values=None,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        attn_head_dim=None,
        cos_attn=False,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        if cos_attn:
            self.attn = CosAttention(
                dim,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                attn_drop=attn_drop,
                proj_drop=drop,
                attn_head_dim=attn_head_dim,
            )
        else:
            self.attn = Attention(
                dim,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                attn_drop=attn_drop,
                proj_drop=drop,
                attn_head_dim=attn_head_dim,
            )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        if init_values > 0:
            self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
            self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x):
        if self.gamma_1 is None:
            x = x + self.drop_path(self.attn(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """Image to Patch Embedding"""

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_spatial_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])
        num_patches = num_spatial_patches * (num_frames // tubelet_size)

        self.img_size = img_size
        self.tubelet_size = tubelet_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.proj = nn.Conv3d(
            in_channels=in_chans,
            out_channels=embed_dim,
            kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
            stride=(self.tubelet_size, patch_size[0], patch_size[1]),
        )

    def forward(self, x, **kwargs):
        B, C, T, H, W = x.shape
        assert (
            H == self.img_size[0] and W == self.img_size[1]
        ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        # b, c, l -> b, l, c
        # [1, 1408, 8, 16, 16] -> [1, 1408, 2048] -> [1, 2048, 1408]
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


# sin-cos position encoding
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
def get_sinusoid_encoding_table(n_position, d_hid):
    """Sinusoid position encoding table"""

    # TODO: make it with torch instead of numpy
    def get_position_angle_vec(position):
        return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]

    sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)


class VisionTransformer(nn.Module):
    """Vision Transformer with support for patch or hybrid CNN input stage"""

    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        num_classes=1000,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.0,
        head_drop_rate=0.0,
        norm_layer=nn.LayerNorm,
        init_values=0.0,
        use_learnable_pos_emb=False,
        init_scale=0.0,
        all_frames=16,
        tubelet_size=2,
        use_mean_pooling=True,
        with_cp=False,
        cos_attn=False,
    ):
        super().__init__()
        self.num_classes = num_classes
        # num_features for consistency with other models
        self.num_features = self.embed_dim = embed_dim
        self.tubelet_size = tubelet_size
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            num_frames=all_frames,
            tubelet_size=tubelet_size,
        )
        num_patches = self.patch_embed.num_patches
        self.with_cp = with_cp

        if use_learnable_pos_emb:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
        else:
            # sine-cosine positional embeddings is on the way
            self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)

        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList(
            [
                Block(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    init_values=init_values,
                    cos_attn=cos_attn,
                )
                for i in range(depth)
            ]
        )
        self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
        self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
        self.head_dropout = nn.Dropout(head_drop_rate)
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        if use_learnable_pos_emb:
            trunc_normal_(self.pos_embed, std=0.02)

        self.apply(self._init_weights)

        self.head.weight.data.mul_(init_scale)
        self.head.bias.data.mul_(init_scale)
        self.num_frames = all_frames

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed", "cls_token"}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=""):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def interpolate_pos_encoding(self, t):
        T = 8
        t0 = t // self.tubelet_size
        if T == t0:
            return self.pos_embed
        dim = self.pos_embed.shape[-1]
        patch_pos_embed = self.pos_embed.permute(0, 2, 1).reshape(1, dim, 8, 16, 16)
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        t0 = t0 + 0.1
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            scale_factor=(t0 / T, 1, 1),
            mode="trilinear",
        )
        assert int(t0) == patch_pos_embed.shape[-3]
        patch_pos_embed = patch_pos_embed.reshape(1, dim, -1).permute(0, 2, 1)
        return patch_pos_embed

    def forward_features(self, x):
        # [1, 3, 16, 224, 224]
        B = x.size(0)
        T = x.size(2)

        # [1, 2048, 1408]
        x = self.patch_embed(x)

        if self.pos_embed is not None:
            x = x + self.interpolate_pos_encoding(T).expand(B, -1, -1).type_as(x).to(x.device).clone().detach()
        x = self.pos_drop(x)

        for blk in self.blocks:
            if self.with_cp:
                x = cp.checkpoint(blk, x)
            else:
                x = blk(x)

        # return self.fc_norm(x)
        
        if self.fc_norm is not None:
            return self.fc_norm(x.mean(1))
        else:
            return self.norm(x[:, 0])

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head_dropout(x)
        x = self.head(x)
        return x


def vit_giant_patch14_224(pretrained=False, **kwargs):
    model = VisionTransformer(
        patch_size=14,
        embed_dim=1408,
        depth=40,
        num_heads=16,
        mlp_ratio=48 / 11,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs,
    )
    model.default_cfg = _cfg()
    return model