Update app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,83 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
|
|
|
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def infer(
|
| 26 |
-
prompt,
|
| 27 |
-
negative_prompt,
|
| 28 |
-
seed,
|
| 29 |
-
randomize_seed,
|
| 30 |
-
width,
|
| 31 |
-
height,
|
| 32 |
-
guidance_scale,
|
| 33 |
-
num_inference_steps,
|
| 34 |
-
progress=gr.Progress(track_tqdm=True),
|
| 35 |
-
):
|
| 36 |
-
if randomize_seed:
|
| 37 |
-
seed = random.randint(0, MAX_SEED)
|
| 38 |
-
|
| 39 |
-
generator = torch.Generator().manual_seed(seed)
|
| 40 |
-
|
| 41 |
-
image = pipe(
|
| 42 |
prompt=prompt,
|
| 43 |
negative_prompt=negative_prompt,
|
| 44 |
-
guidance_scale=guidance_scale
|
| 45 |
-
num_inference_steps=num_inference_steps,
|
| 46 |
-
width=width,
|
| 47 |
-
height=height,
|
| 48 |
-
generator=generator,
|
| 49 |
).images[0]
|
| 50 |
-
|
| 51 |
-
return image
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
"
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
max-width: 640px;
|
| 64 |
-
}
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
with gr.Blocks(css=css) as demo:
|
| 68 |
-
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
| 70 |
-
|
| 71 |
-
with gr.Row():
|
| 72 |
-
prompt = gr.Text(
|
| 73 |
label="Prompt",
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
placeholder="Enter your prompt",
|
| 77 |
-
container=False,
|
| 78 |
)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
-
negative_prompt = gr.Text(
|
| 86 |
-
label="Negative prompt",
|
| 87 |
-
max_lines=1,
|
| 88 |
-
placeholder="Enter a negative prompt",
|
| 89 |
-
visible=False,
|
| 90 |
)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
value=0,
|
| 98 |
)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
minimum=256,
|
| 114 |
-
maximum=MAX_IMAGE_SIZE,
|
| 115 |
-
step=32,
|
| 116 |
-
value=1024, # Replace with defaults that work for your model
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
with gr.Row():
|
| 120 |
-
guidance_scale = gr.Slider(
|
| 121 |
-
label="Guidance scale",
|
| 122 |
-
minimum=0.0,
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
num_inference_steps = gr.Slider(
|
| 129 |
-
label="Number of inference steps",
|
| 130 |
-
minimum=1,
|
| 131 |
-
maximum=50,
|
| 132 |
-
step=1,
|
| 133 |
-
value=2, # Replace with defaults that work for your model
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
| 137 |
-
gr.on(
|
| 138 |
-
triggers=[run_button.click, prompt.submit],
|
| 139 |
-
fn=infer,
|
| 140 |
-
inputs=[
|
| 141 |
-
prompt,
|
| 142 |
-
negative_prompt,
|
| 143 |
-
seed,
|
| 144 |
-
randomize_seed,
|
| 145 |
-
width,
|
| 146 |
-
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
],
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
)
|
| 152 |
|
| 153 |
-
|
| 154 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from diffusers import AutoPipelineForText2Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# Model ve pipeline kurulumu
|
| 6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 8 |
+
"black-forest-labs/FLUX.1-dev",
|
| 9 |
+
torch_dtype=torch.float16
|
| 10 |
+
).to(device)
|
| 11 |
+
|
| 12 |
+
# LoRA modelini yükle
|
| 13 |
+
pipeline.load_lora_weights("codermert/gamzekocc_fluxx", weight_name="lora.safetensors")
|
| 14 |
+
|
| 15 |
+
def generate_image(prompt, negative_prompt, guidance_scale):
|
| 16 |
+
# TOK trigger'ını otomatik ekle
|
| 17 |
+
if not prompt.startswith("TOK"):
|
| 18 |
+
prompt = "TOK, " + prompt
|
| 19 |
+
|
| 20 |
+
# Görseli oluştur
|
| 21 |
+
image = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
prompt=prompt,
|
| 23 |
negative_prompt=negative_prompt,
|
| 24 |
+
guidance_scale=float(guidance_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
).images[0]
|
| 26 |
+
|
| 27 |
+
return image
|
| 28 |
+
|
| 29 |
+
# Gradio arayüzü
|
| 30 |
+
with gr.Blocks(title="Mert Baba'nın Görsel Oluşturucusu") as demo:
|
| 31 |
+
gr.Markdown("""
|
| 32 |
+
# 🎨 Mert Baba'nın AI Görsel Oluşturucusu
|
| 33 |
+
FLUX LoRA modeli ile özel görseller oluşturun!
|
| 34 |
+
""")
|
| 35 |
+
|
| 36 |
+
with gr.Row():
|
| 37 |
+
with gr.Column():
|
| 38 |
+
prompt = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
label="Prompt",
|
| 40 |
+
placeholder="Görsel için açıklama girin...",
|
| 41 |
+
lines=3
|
|
|
|
|
|
|
| 42 |
)
|
| 43 |
+
negative_prompt = gr.Textbox(
|
| 44 |
+
label="Negative Prompt",
|
| 45 |
+
value="blurry, bad quality, worst quality, jpeg artifacts",
|
| 46 |
+
lines=2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
+
guidance_scale = gr.Slider(
|
| 49 |
+
minimum=1,
|
| 50 |
+
maximum=20,
|
| 51 |
+
value=7.5,
|
| 52 |
+
step=0.5,
|
| 53 |
+
label="Guidance Scale"
|
|
|
|
| 54 |
)
|
| 55 |
+
generate_btn = gr.Button("Görsel Oluştur 🎨")
|
| 56 |
+
|
| 57 |
+
with gr.Column():
|
| 58 |
+
output_image = gr.Image(label="Oluşturulan Görsel")
|
| 59 |
+
|
| 60 |
+
# Örnek promptlar
|
| 61 |
+
gr.Examples(
|
| 62 |
+
examples=[
|
| 63 |
+
["A striking woman lit with bi-color directional lighting poses",
|
| 64 |
+
"blurry, bad quality, worst quality, jpeg artifacts",
|
| 65 |
+
7.5],
|
| 66 |
+
["A beautiful portrait photo in a city",
|
| 67 |
+
"blurry, bad quality",
|
| 68 |
+
7.5],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
],
|
| 70 |
+
inputs=[prompt, negative_prompt, guidance_scale],
|
| 71 |
+
outputs=output_image,
|
| 72 |
+
fn=generate_image,
|
| 73 |
+
cache_examples=True,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Butona tıklayınca çalışacak fonksiyon
|
| 77 |
+
generate_btn.click(
|
| 78 |
+
fn=generate_image,
|
| 79 |
+
inputs=[prompt, negative_prompt, guidance_scale],
|
| 80 |
+
outputs=output_image
|
| 81 |
)
|
| 82 |
|
| 83 |
+
demo.launch()
|
|
|