codermert commited on
Commit
a951bd6
·
verified ·
1 Parent(s): 18db6ca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -140
app.py CHANGED
@@ -1,154 +1,83 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
  ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
  label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
  )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
  )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
  ],
150
- outputs=[result, seed],
 
 
 
 
 
 
 
 
 
 
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
+ from diffusers import AutoPipelineForText2Image
 
 
 
 
3
  import torch
4
 
5
+ # Model ve pipeline kurulumu
6
  device = "cuda" if torch.cuda.is_available() else "cpu"
7
+ pipeline = AutoPipelineForText2Image.from_pretrained(
8
+ "black-forest-labs/FLUX.1-dev",
9
+ torch_dtype=torch.float16
10
+ ).to(device)
11
+
12
+ # LoRA modelini yükle
13
+ pipeline.load_lora_weights("codermert/gamzekocc_fluxx", weight_name="lora.safetensors")
14
+
15
+ def generate_image(prompt, negative_prompt, guidance_scale):
16
+ # TOK trigger'ını otomatik ekle
17
+ if not prompt.startswith("TOK"):
18
+ prompt = "TOK, " + prompt
19
+
20
+ # Görseli oluştur
21
+ image = pipeline(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  prompt=prompt,
23
  negative_prompt=negative_prompt,
24
+ guidance_scale=float(guidance_scale)
 
 
 
 
25
  ).images[0]
26
+
27
+ return image
28
+
29
+ # Gradio arayüzü
30
+ with gr.Blocks(title="Mert Baba'nın Görsel Oluşturucusu") as demo:
31
+ gr.Markdown("""
32
+ # 🎨 Mert Baba'nın AI Görsel Oluşturucusu
33
+ FLUX LoRA modeli ile özel görseller oluşturun!
34
+ """)
35
+
36
+ with gr.Row():
37
+ with gr.Column():
38
+ prompt = gr.Textbox(
 
 
 
 
 
 
 
 
 
 
39
  label="Prompt",
40
+ placeholder="Görsel için açıklama girin...",
41
+ lines=3
 
 
42
  )
43
+ negative_prompt = gr.Textbox(
44
+ label="Negative Prompt",
45
+ value="blurry, bad quality, worst quality, jpeg artifacts",
46
+ lines=2
 
 
 
 
 
 
 
47
  )
48
+ guidance_scale = gr.Slider(
49
+ minimum=1,
50
+ maximum=20,
51
+ value=7.5,
52
+ step=0.5,
53
+ label="Guidance Scale"
 
54
  )
55
+ generate_btn = gr.Button("Görsel Oluştur 🎨")
56
+
57
+ with gr.Column():
58
+ output_image = gr.Image(label="Oluşturulan Görsel")
59
+
60
+ # Örnek promptlar
61
+ gr.Examples(
62
+ examples=[
63
+ ["A striking woman lit with bi-color directional lighting poses",
64
+ "blurry, bad quality, worst quality, jpeg artifacts",
65
+ 7.5],
66
+ ["A beautiful portrait photo in a city",
67
+ "blurry, bad quality",
68
+ 7.5],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  ],
70
+ inputs=[prompt, negative_prompt, guidance_scale],
71
+ outputs=output_image,
72
+ fn=generate_image,
73
+ cache_examples=True,
74
+ )
75
+
76
+ # Butona tıklayınca çalışacak fonksiyon
77
+ generate_btn.click(
78
+ fn=generate_image,
79
+ inputs=[prompt, negative_prompt, guidance_scale],
80
+ outputs=output_image
81
  )
82
 
83
+ demo.launch()