sentinel / app.py
codelion's picture
Create app.py
5482ab4 verified
raw
history blame
7.92 kB
import streamlit as st
import cv2
import torch
from PIL import Image
import numpy as np
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import ViltProcessor, ViltForQuestionAnswering
import time
from io import BytesIO
import threading
import queue
from datetime import datetime
# Set page config to wide mode
st.set_page_config(layout="wide", page_title="Securade.ai Sentinel")
def initialize_state():
if 'initialized' not in st.session_state:
st.session_state.frame = None
st.session_state.captions = []
st.session_state.stop_event = threading.Event()
st.session_state.frame_queue = queue.Queue(maxsize=1)
st.session_state.caption_queue = queue.Queue(maxsize=10)
st.session_state.processor = None
st.session_state.thread = None
st.session_state.initialized = True
@st.cache_resource
def load_processor():
class VideoProcessor:
def __init__(self):
self.caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
self.caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
self.vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
self.vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# Check for available devices
if torch.cuda.is_available():
self.device = "cuda"
elif torch.backends.mps.is_available():
self.device = "mps"
else:
self.device = "cpu"
self.caption_model.to(self.device)
self.vqa_model.to(self.device)
def generate_caption(self, image):
inputs = self.caption_processor(images=image, return_tensors="pt").to(self.device)
output = self.caption_model.generate(**inputs, max_new_tokens=50)
return self.caption_processor.decode(output[0], skip_special_tokens=True)
def answer_question(self, image, question):
inputs = self.vqa_processor(image, question, return_tensors="pt").to(self.device)
outputs = self.vqa_model(**inputs)
logits = outputs.logits
idx = logits.argmax(-1).item()
return self.vqa_model.config.id2label[idx]
return VideoProcessor()
def get_video_source(source_type, source_path=None):
if source_type == "Webcam":
return cv2.VideoCapture(0)
elif source_type == "Video File":
return cv2.VideoCapture(source_path)
elif source_type == "RTSP Stream":
return cv2.VideoCapture(source_path)
return None
def process_video(stop_event, frame_queue, caption_queue, processor, source_type, source_path=None):
cap = get_video_source(source_type, source_path)
last_caption_time = time.time()
while not stop_event.is_set():
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (800, 600))
current_time = time.time()
# Generate caption every 3 seconds
if current_time - last_caption_time >= 3.0:
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
caption = processor.generate_caption(img)
timestamp = datetime.now().strftime("%H:%M:%S")
try:
if caption_queue.full():
caption_queue.get_nowait()
caption_queue.put_nowait({'timestamp': timestamp, 'caption': caption})
last_caption_time = current_time
except queue.Full:
pass
try:
if frame_queue.full():
frame_queue.get_nowait()
frame_queue.put_nowait(frame)
except queue.Full:
pass
time.sleep(0.03)
cap.release()
def main():
initialize_state()
# Main title
st.title("Securade.ai Sentinel")
# Create three columns for layout
video_col, caption_col, qa_col = st.columns([0.4, 0.3, 0.3])
# Video column
with video_col:
st.subheader("Video Feed")
# Video source selection
source_type = st.selectbox(
"Select Video Source",
["Webcam", "Video File", "RTSP Stream"]
)
source_path = None
if source_type == "Video File":
source_file = st.file_uploader("Choose a video file", type=['mp4', 'avi', 'mov'])
if source_file:
# Save the uploaded file temporarily
temp_file = BytesIO(source_file.read())
source_path = temp_file
elif source_type == "RTSP Stream":
source_path = st.text_input("Enter RTSP URL", placeholder="rtsp://your-camera-url")
start_stop = st.button("Start/Stop Surveillance")
video_placeholder = st.empty()
if start_stop:
if st.session_state.stop_event.is_set():
# Start surveillance
if st.session_state.processor is None:
st.session_state.processor = load_processor()
st.session_state.stop_event.clear()
st.session_state.thread = threading.Thread(
target=process_video,
args=(
st.session_state.stop_event,
st.session_state.frame_queue,
st.session_state.caption_queue,
st.session_state.processor,
source_type,
source_path
),
daemon=True
)
st.session_state.thread.start()
else:
# Stop surveillance
st.session_state.stop_event.set()
if st.session_state.thread:
st.session_state.thread.join(timeout=1.0)
st.session_state.frame = None
video_placeholder.empty()
# Caption column
with caption_col:
st.subheader("Scene Analysis")
caption_placeholder = st.empty()
# Q&A column
with qa_col:
st.subheader("Visual Q&A")
question = st.text_input("Ask a question about the scene:")
ask_button = st.button("Ask")
answer_placeholder = st.empty()
if ask_button and question and st.session_state.frame is not None:
img = Image.fromarray(cv2.cvtColor(st.session_state.frame, cv2.COLOR_BGR2RGB))
answer = st.session_state.processor.answer_question(img, question)
answer_placeholder.markdown(f"**Answer:** {answer}")
# Update loop
if not st.session_state.stop_event.is_set():
placeholder = st.empty()
while True:
try:
# Update video frame
frame = st.session_state.frame_queue.get_nowait()
st.session_state.frame = frame
video_placeholder.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Update captions
while not st.session_state.caption_queue.empty():
new_caption = st.session_state.caption_queue.get_nowait()
st.session_state.captions.append(new_caption)
st.session_state.captions = st.session_state.captions[-5:] # Keep last 5 captions
if st.session_state.captions:
caption_text = "\n\n".join([
f"**[{cap['timestamp']}]** {cap['caption']}"
for cap in reversed(st.session_state.captions)
])
caption_placeholder.markdown(caption_text)
except queue.Empty:
time.sleep(0.01)
continue
if __name__ == "__main__":
main()