File size: 8,651 Bytes
5482ab4 46d55ac 5482ab4 b8d514c 5482ab4 46d55ac 3fcc88e 46d55ac 3fcc88e 46d55ac 5482ab4 419fa8e 5482ab4 419fa8e 5482ab4 c407d5f 5482ab4 46d55ac 3fcc88e 5482ab4 b8d514c 5482ab4 b8d514c 5482ab4 b8d514c 5482ab4 b8d514c 5482ab4 b8d514c 5482ab4 b8d514c 5482ab4 419fa8e 5482ab4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import streamlit as st
import cv2
import torch
from PIL import Image
import numpy as np
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import ViltProcessor, ViltForQuestionAnswering
import time
from io import BytesIO
import threading
import queue
import os
import tempfile
from datetime import datetime
# Set page config to wide mode
st.set_page_config(layout="wide", page_title="Securade.ai Sentinel")
def initialize_state():
if 'initialized' not in st.session_state:
st.session_state.frame = None
st.session_state.captions = []
st.session_state.stop_event = threading.Event()
st.session_state.frame_queue = queue.Queue(maxsize=1)
st.session_state.caption_queue = queue.Queue(maxsize=10)
st.session_state.processor = None
st.session_state.thread = None
st.session_state.is_streaming = False
st.session_state.initialized = True
@st.cache_resource
def load_processor():
class VideoProcessor:
def __init__(self):
self.caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
self.caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
self.vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
self.vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# Check for available devices
if torch.cuda.is_available():
self.device = "cuda"
elif torch.backends.mps.is_available():
self.device = "mps"
else:
self.device = "cpu"
self.caption_model.to(self.device)
self.vqa_model.to(self.device)
def generate_caption(self, image):
inputs = self.caption_processor(images=image, return_tensors="pt").to(self.device)
output = self.caption_model.generate(**inputs, max_new_tokens=50)
return self.caption_processor.decode(output[0], skip_special_tokens=True)
def answer_question(self, image, question):
inputs = self.vqa_processor(image, question, return_tensors="pt").to(self.device)
outputs = self.vqa_model(**inputs)
logits = outputs.logits
idx = logits.argmax(-1).item()
return self.vqa_model.config.id2label[idx]
return VideoProcessor()
def get_video_source(source_type, source_path=None):
if source_type == "Webcam":
return cv2.VideoCapture(0)
elif source_type == "Video File" and source_path:
# Create a temporary file with a specific extension
temp_dir = tempfile.gettempdir()
temp_path = os.path.join(temp_dir, 'temp_video.mp4')
with open(temp_path, 'wb') as f:
f.write(source_path.getvalue())
cap = cv2.VideoCapture(temp_path)
if not cap.isOpened():
st.error("Error: Could not open video file. Please ensure it's a supported format (MP4 with H.264 encoding recommended)")
return None
return cap
elif source_type == "RTSP Stream" and source_path:
return cv2.VideoCapture(source_path)
return None
def process_video(stop_event, frame_queue, caption_queue, processor, source_type, source_path=None):
cap = get_video_source(source_type, source_path)
last_caption_time = time.time()
while not stop_event.is_set():
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (800, 600))
current_time = time.time()
# Generate caption every 8 seconds
if current_time - last_caption_time >= 8.0:
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
caption = processor.generate_caption(img)
timestamp = datetime.now().strftime("%H:%M:%S")
try:
if caption_queue.full():
caption_queue.get_nowait()
caption_queue.put_nowait({'timestamp': timestamp, 'caption': caption})
last_caption_time = current_time
except queue.Full:
pass
try:
if frame_queue.full():
frame_queue.get_nowait()
frame_queue.put_nowait(frame)
except queue.Full:
pass
# time.sleep(0.03)
cap.release()
def main():
initialize_state()
# Main title
st.title("Securade.ai Sentinel")
# Create three columns for layout
video_col, caption_col, qa_col = st.columns([0.4, 0.3, 0.3])
# Video column
with video_col:
st.subheader("Video Feed")
# Video source selection
source_type = "Video File"
source_path = None
uploaded_file = None
if source_type == "Video File":
uploaded_file = st.file_uploader("Choose a video file", type=['mp4', 'avi', 'mov'])
if uploaded_file:
source_path = BytesIO(uploaded_file.getvalue())
elif source_type == "RTSP Stream":
source_path = st.text_input("Enter RTSP URL", placeholder="rtsp://your-camera-url")
start_stop = st.button(
"Start Surveillance" if not st.session_state.is_streaming else "Stop Surveillance"
)
video_placeholder = st.empty()
if start_stop:
if not st.session_state.is_streaming:
# Start surveillance
if st.session_state.processor is None:
st.session_state.processor = load_processor()
st.session_state.stop_event.clear()
st.session_state.frame_queue = queue.Queue(maxsize=1)
st.session_state.caption_queue = queue.Queue(maxsize=10)
st.session_state.thread = threading.Thread(
target=process_video,
args=(
st.session_state.stop_event,
st.session_state.frame_queue,
st.session_state.caption_queue,
st.session_state.processor,
source_type,
source_path
),
daemon=True
)
st.session_state.thread.start()
st.session_state.is_streaming = True
else:
# Stop surveillance
st.session_state.stop_event.set()
if st.session_state.thread:
st.session_state.thread.join(timeout=1.0)
st.session_state.frame = None
st.session_state.is_streaming = False
video_placeholder.empty()
# Caption column
with caption_col:
st.subheader("Scene Analysis")
caption_placeholder = st.empty()
# Q&A column
with qa_col:
st.subheader("Visual Q&A")
question = st.text_input("Ask a question about the scene:")
ask_button = st.button("Ask")
answer_placeholder = st.empty()
if ask_button and question and st.session_state.frame is not None:
img = Image.fromarray(cv2.cvtColor(st.session_state.frame, cv2.COLOR_BGR2RGB))
answer = st.session_state.processor.answer_question(img, question)
answer_placeholder.markdown(f"**Answer:** {answer}")
# Update loop
if st.session_state.is_streaming:
placeholder = st.empty()
while True:
try:
# Update video frame
frame = st.session_state.frame_queue.get_nowait()
st.session_state.frame = frame
video_placeholder.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Update captions
while not st.session_state.caption_queue.empty():
new_caption = st.session_state.caption_queue.get_nowait()
st.session_state.captions.append(new_caption)
st.session_state.captions = st.session_state.captions[-5:] # Keep last 5 captions
if st.session_state.captions:
caption_text = "\n\n".join([
f"**[{cap['timestamp']}]** {cap['caption']}"
for cap in reversed(st.session_state.captions)
])
caption_placeholder.markdown(caption_text)
except queue.Empty:
# time.sleep(0.01)
continue
if __name__ == "__main__":
main() |