Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
# main.py
|
|
|
2 |
import os
|
3 |
import streamlit as st
|
4 |
import anthropic
|
|
|
5 |
|
6 |
-
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
7 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
8 |
from langchain_community.vectorstores import SupabaseVectorStore
|
9 |
from langchain_community.llms import HuggingFaceEndpoint
|
10 |
-
from langchain_community.vectorstores import SupabaseVectorStore
|
11 |
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
from langchain.memory import ConversationBufferMemory
|
@@ -16,122 +16,129 @@ from supabase import Client, create_client
|
|
16 |
from streamlit.logger import get_logger
|
17 |
from stats import get_usage, add_usage
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
anthropic_api_key = st.secrets.anthropic_api_key
|
23 |
-
hf_api_key
|
24 |
-
username
|
25 |
|
26 |
supabase: Client = create_client(supabase_url, supabase_key)
|
27 |
logger = get_logger(__name__)
|
28 |
|
29 |
-
embeddings
|
30 |
-
|
|
|
31 |
model_name="BAAI/bge-large-en-v1.5",
|
32 |
-
|
|
|
33 |
)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
qa = None
|
49 |
-
add_usage(supabase, "chat", "prompt" + query, {"model": model, "temperature": temperature})
|
50 |
-
logger.info('Using HF model %s', model)
|
51 |
-
# print(st.session_state['max_tokens'])
|
52 |
-
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model)
|
53 |
-
model_kwargs = {"temperature" : temperature,
|
54 |
-
"max_new_tokens" : max_tokens,
|
55 |
-
# "repetition_penalty" : 1.1,
|
56 |
-
"return_full_text" : False}
|
57 |
hf = HuggingFaceEndpoint(
|
58 |
-
endpoint_url=
|
59 |
task="text-generation",
|
60 |
huggingfacehub_api_token=hf_api_key,
|
61 |
-
model_kwargs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
79 |
st.set_page_config(
|
80 |
page_title="Securade.ai - Safety Copilot",
|
81 |
page_icon="https://securade.ai/favicon.ico",
|
82 |
layout="centered",
|
83 |
initial_sidebar_state="collapsed",
|
84 |
menu_items={
|
85 |
-
"About": "# Securade.ai Safety Copilot v0.1\n
|
86 |
-
"Get Help"
|
87 |
-
"Report a Bug": "mailto:[email protected]"
|
88 |
-
}
|
89 |
)
|
90 |
|
91 |
st.title("π·ββοΈ Safety Copilot π¦Ί")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
st.
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
st.markdown(message["content"])
|
104 |
-
|
105 |
-
# Accept user input
|
106 |
-
if prompt := st.chat_input("Ask a question"):
|
107 |
-
# print(prompt)
|
108 |
-
# Add user message to chat history
|
109 |
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
110 |
-
# Display user message in chat message container
|
111 |
with st.chat_message("user"):
|
112 |
st.markdown(prompt)
|
113 |
-
|
114 |
-
with st.spinner(
|
115 |
-
|
116 |
-
|
117 |
-
# Display assistant response in chat message container
|
118 |
with st.chat_message("assistant"):
|
119 |
-
st.markdown(
|
120 |
-
|
121 |
-
# print(response)
|
122 |
-
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
123 |
-
|
124 |
-
# query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500)
|
125 |
-
# columns = st.columns(2)
|
126 |
-
# with columns[0]:
|
127 |
-
# button = st.button("Ask")
|
128 |
-
# with columns[1]:
|
129 |
-
# clear_history = st.button("Clear History", type='secondary')
|
130 |
-
|
131 |
-
# st.markdown("---\n\n")
|
132 |
-
|
133 |
-
# if clear_history:
|
134 |
-
# # Clear memory in Langchain
|
135 |
-
# memory.clear()
|
136 |
-
# st.session_state['chat_history'] = []
|
137 |
-
# st.experimental_rerun()
|
|
|
1 |
# main.py
|
2 |
+
|
3 |
import os
|
4 |
import streamlit as st
|
5 |
import anthropic
|
6 |
+
from requests import JSONDecodeError
|
7 |
|
|
|
8 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
9 |
from langchain_community.vectorstores import SupabaseVectorStore
|
10 |
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
11 |
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
from langchain.memory import ConversationBufferMemory
|
|
|
16 |
from streamlit.logger import get_logger
|
17 |
from stats import get_usage, add_usage
|
18 |
|
19 |
+
# βββββββ supabase + secrets ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
20 |
+
supabase_url = st.secrets.SUPABASE_URL
|
21 |
+
supabase_key = st.secrets.SUPABASE_KEY
|
22 |
+
openai_api_key = st.secrets.openai_api_key
|
23 |
anthropic_api_key = st.secrets.anthropic_api_key
|
24 |
+
hf_api_key = st.secrets.hf_api_key
|
25 |
+
username = st.secrets.username
|
26 |
|
27 |
supabase: Client = create_client(supabase_url, supabase_key)
|
28 |
logger = get_logger(__name__)
|
29 |
|
30 |
+
# βββββββ embeddings βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
31 |
+
# Switch to local BGE embeddings (no JSONDecode errors, no HTTPβbatch issues) :contentReference[oaicite:0]{index=0}
|
32 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
33 |
model_name="BAAI/bge-large-en-v1.5",
|
34 |
+
model_kwargs={"device": "cpu"},
|
35 |
+
encode_kwargs={"normalize_embeddings": True},
|
36 |
)
|
37 |
|
38 |
+
# βββββββ vector store + memory βββββββββββββββββββββββββββββββββββββββββββββββββ
|
39 |
+
vector_store = SupabaseVectorStore(
|
40 |
+
client=supabase,
|
41 |
+
embedding=embeddings,
|
42 |
+
query_name="match_documents",
|
43 |
+
table_name="documents",
|
44 |
+
)
|
45 |
+
memory = ConversationBufferMemory(
|
46 |
+
memory_key="chat_history",
|
47 |
+
input_key="question",
|
48 |
+
output_key="answer",
|
49 |
+
return_messages=True,
|
50 |
+
)
|
51 |
|
52 |
+
# βββββββ LLM setup ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
53 |
+
model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
54 |
+
temperature = 0.1
|
55 |
+
max_tokens = 500
|
56 |
|
57 |
+
def response_generator(query: str) -> str:
|
58 |
+
"""Ask the RAG chain to answer `query`, with JSONβerror fallback."""
|
59 |
+
# log usage
|
60 |
+
add_usage(supabase, "chat", "prompt:" + query, {"model": model, "temperature": temperature})
|
61 |
+
logger.info("Using HF model %s", model)
|
62 |
|
63 |
+
# prepare HF text-generation LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
hf = HuggingFaceEndpoint(
|
65 |
+
endpoint_url=f"https://api-inference.huggingface.co/models/{model}",
|
66 |
task="text-generation",
|
67 |
huggingfacehub_api_token=hf_api_key,
|
68 |
+
model_kwargs={
|
69 |
+
"temperature": temperature,
|
70 |
+
"max_new_tokens": max_tokens,
|
71 |
+
"return_full_text": False,
|
72 |
+
},
|
73 |
+
)
|
74 |
+
|
75 |
+
# conversational RAG chain
|
76 |
+
qa = ConversationalRetrievalChain.from_llm(
|
77 |
+
llm=hf,
|
78 |
+
retriever=vector_store.as_retriever(
|
79 |
+
search_kwargs={"score_threshold": 0.6, "k": 4, "filter": {"user": username}}
|
80 |
+
),
|
81 |
+
memory=memory,
|
82 |
+
verbose=True,
|
83 |
+
return_source_documents=True,
|
84 |
)
|
85 |
+
|
86 |
+
try:
|
87 |
+
result = qa({"question": query})
|
88 |
+
except JSONDecodeError as e:
|
89 |
+
# fallback logging
|
90 |
+
logger.error("Embedding JSONDecodeError: %s", e)
|
91 |
+
return "Sorry, I had trouble understanding the embedded data. Please try again."
|
92 |
+
|
93 |
+
answer = result.get("answer", "")
|
94 |
+
sources = result.get("source_documents", [])
|
95 |
+
|
96 |
+
if not sources:
|
97 |
+
return (
|
98 |
+
"Iβm sorry, I donβt have enough information to answer that. "
|
99 |
+
"If you have a public data source to add, please email [email protected]."
|
100 |
+
)
|
101 |
+
return answer
|
102 |
+
|
103 |
+
# βββββββ Streamlit UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
104 |
st.set_page_config(
|
105 |
page_title="Securade.ai - Safety Copilot",
|
106 |
page_icon="https://securade.ai/favicon.ico",
|
107 |
layout="centered",
|
108 |
initial_sidebar_state="collapsed",
|
109 |
menu_items={
|
110 |
+
"About": "# Securade.ai Safety Copilot v0.1\n[https://securade.ai](https://securade.ai)",
|
111 |
+
"Get Help": "https://securade.ai",
|
112 |
+
"Report a Bug": "mailto:[email protected]",
|
113 |
+
},
|
114 |
)
|
115 |
|
116 |
st.title("π·ββοΈ Safety Copilot π¦Ί")
|
117 |
+
stats = get_usage(supabase)
|
118 |
+
st.markdown(f"_{stats} queries answered!_")
|
119 |
+
st.markdown(
|
120 |
+
"Chat with your personal safety assistant about any health & safety related queries. "
|
121 |
+
"[[blog](https://securade.ai/blog/how-securade-ai-safety-copilot-transforms-worker-safety.html)"
|
122 |
+
"|[paper](https://securade.ai/assets/pdfs/Securade.ai-Safety-Copilot-Whitepaper.pdf)]"
|
123 |
+
)
|
124 |
|
125 |
+
if "chat_history" not in st.session_state:
|
126 |
+
st.session_state.chat_history = []
|
127 |
+
|
128 |
+
# show history
|
129 |
+
for msg in st.session_state.chat_history:
|
130 |
+
with st.chat_message(msg["role"]):
|
131 |
+
st.markdown(msg["content"])
|
132 |
+
|
133 |
+
# new user input
|
134 |
+
if prompt := st.chat_input("Ask a question"):
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
|
|
136 |
with st.chat_message("user"):
|
137 |
st.markdown(prompt)
|
138 |
+
|
139 |
+
with st.spinner("Safety briefing in progress..."):
|
140 |
+
answer = response_generator(prompt)
|
141 |
+
|
|
|
142 |
with st.chat_message("assistant"):
|
143 |
+
st.markdown(answer)
|
144 |
+
st.session_state.chat_history.append({"role": "assistant", "content": answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|