Asankhaya Sharma commited on
Commit
5d1688a
·
1 Parent(s): cae23e1
Files changed (4) hide show
  1. brain.py +0 -40
  2. components_keys.py +0 -4
  3. explorer.py +0 -14
  4. files.py +0 -191
brain.py DELETED
@@ -1,40 +0,0 @@
1
- import numpy as np
2
- import streamlit as st
3
-
4
-
5
- def brain(supabase):
6
- ## List all documents
7
- response = supabase.table("documents").select("name:metadata->>file_name, size:metadata->>file_size", count="exact").filter('metadata->>user', 'eq', st.session_state["username"]).execute()
8
-
9
- documents = response.data # Access the data from the response
10
-
11
- # Convert each dictionary to a tuple of items, then to a set to remove duplicates, and then back to a dictionary
12
- unique_data = [dict(t) for t in set(tuple(d.items()) for d in documents)]
13
-
14
- # Sort the list of documents by size in decreasing order
15
- unique_data.sort(key=lambda x: int(x['size']), reverse=True)
16
-
17
- # Display some metrics at the top of the page
18
- col1, col2 = st.columns(2)
19
- col1.metric(label="Total Documents", value=len(unique_data))
20
- col2.metric(label="Total Size (bytes)", value=sum(int(doc['size']) for doc in unique_data))
21
-
22
- for document in unique_data:
23
- # Create a unique key for each button by using the document name
24
- button_key = f"delete_{document['name']}"
25
-
26
- # Display the document name, size and the delete button on the same line
27
- col1, col2, col3 = st.columns([3, 1, 1])
28
- col1.markdown(f"**{document['name']}** ({document['size']} bytes)")
29
-
30
- if col2.button('❌', key=button_key):
31
- delete_document(supabase, document['name'])
32
-
33
- def delete_document(supabase, document_name):
34
- # Delete the document from the database
35
- response = supabase.table("documents").delete().match({"metadata->>file_name": document_name}).execute()
36
- # Check if the deletion was successful
37
- if len(response.data) > 0:
38
- st.write(f"✂️ {document_name} was deleted.")
39
- else:
40
- st.write(f"❌ {document_name} was not deleted.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
components_keys.py DELETED
@@ -1,4 +0,0 @@
1
- """Store streamlit component keys"""
2
-
3
- class ComponentsKeys:
4
- FILE_UPLOADER = "file_uploader"
 
 
 
 
 
explorer.py DELETED
@@ -1,14 +0,0 @@
1
- import streamlit as st
2
-
3
-
4
- def view_document(supabase):
5
- # Get the document from the database
6
- response = supabase.table("documents").select("content").filter('metadata->>user', 'eq', st.session_state["username"]).execute()
7
- # st.write("**This feature is in active development**")
8
- # Display a list of elements from the documents
9
- # If the user clicks on an element, display the content of the document
10
- i = 0
11
- for document in response.data:
12
- i += 1
13
- if st.button(document['content'][:50].replace("\n", " "), key = str(i)):
14
- st.write(document['content'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
files.py DELETED
@@ -1,191 +0,0 @@
1
- import os
2
- from typing import (
3
- Any,
4
- Union,
5
- )
6
- import zipfile
7
- import streamlit as st
8
- from streamlit.runtime.uploaded_file_manager import (
9
- UploadedFile,
10
- UploadedFileRec,
11
- UploadedFileManager,
12
- )
13
- from streamlit.runtime.scriptrunner import get_script_run_ctx
14
- from supabase.client import Client
15
- from langchain.vectorstores.supabase import SupabaseVectorStore
16
- from components_keys import ComponentsKeys
17
- from loaders.audio import process_audio
18
- from loaders.txt import process_txt
19
- from loaders.csv import process_csv
20
- from loaders.markdown import process_markdown
21
- from loaders.pdf import process_pdf
22
- from loaders.html import (
23
- create_html_file,
24
- delete_tempfile,
25
- get_html,
26
- process_html,
27
- )
28
- from loaders.powerpoint import process_powerpoint
29
- from loaders.docx import process_docx
30
- from utils import compute_sha1_from_content
31
-
32
-
33
- ctx = get_script_run_ctx()
34
- manager = UploadedFileManager()
35
- file_processors = {
36
- ".txt": process_txt,
37
- ".csv": process_csv,
38
- ".md": process_markdown,
39
- ".markdown": process_markdown,
40
- ".m4a": process_audio,
41
- ".mp3": process_audio,
42
- ".webm": process_audio,
43
- ".mp4": process_audio,
44
- ".mpga": process_audio,
45
- ".wav": process_audio,
46
- ".mpeg": process_audio,
47
- ".pdf": process_pdf,
48
- ".html": process_html,
49
- ".pptx": process_powerpoint,
50
- ".docx": process_docx
51
- }
52
-
53
- def file_uploader(supabase, vector_store):
54
- # Omit zip file support if the `st.secrets.self_hosted` != "true" because
55
- # a zip file can consist of multiple files so the limit on 1 file uploaded
56
- # at a time in the demo can be circumvented.
57
- accepted_file_extensions = list(file_processors.keys())
58
- accept_multiple_files = st.secrets.self_hosted == "true"
59
- if accept_multiple_files:
60
- accepted_file_extensions += [".zip"]
61
-
62
- files = st.file_uploader(
63
- "**Upload a file**",
64
- accept_multiple_files=accept_multiple_files,
65
- type=accepted_file_extensions,
66
- key=ComponentsKeys.FILE_UPLOADER,
67
- )
68
- if st.secrets.self_hosted == "false":
69
- st.markdown("**In demo mode, the max file size is 1MB**")
70
- if st.button("Add to Database"):
71
- # Single file upload
72
- if isinstance(files, UploadedFile):
73
- filter_file(files, supabase, vector_store)
74
- # Multiple files upload
75
- elif isinstance(files, list):
76
- for file in files:
77
- filter_file(file, supabase, vector_store)
78
-
79
- def file_already_exists(supabase, file):
80
- file_sha1 = compute_sha1_from_content(file.getvalue())
81
- response = supabase.table("documents").select("id").eq("metadata->>file_sha1", file_sha1).execute()
82
- return len(response.data) > 0
83
-
84
- def file_to_uploaded_file(file: Any) -> Union[None, UploadedFile]:
85
- """Convert a file to a streamlit `UploadedFile` object.
86
-
87
- This allows us to unzip files and treat them the same way
88
- streamlit treats files uploaded through the file uploader.
89
-
90
- Parameters
91
- ---------
92
- file : Any
93
- The file. Can be any file supported by this app.
94
-
95
- Returns
96
- -------
97
- Union[None, UploadedFile]
98
- The file converted to a streamlit `UploadedFile` object.
99
- Returns `None` if the script context cannot be grabbed.
100
- """
101
-
102
- if ctx is None:
103
- print("script context not found, skipping uploading file:", file.name)
104
- return
105
-
106
- file_extension = os.path.splitext(file.name)[-1]
107
- file_name = file.name
108
- file_data = file.read()
109
- # The file manager will automatically assign an ID so pass `None`
110
- # Reference: https://github.com/streamlit/streamlit/blob/9a6ce804b7977bdc1f18906d1672c45f9a9b3398/lib/streamlit/runtime/uploaded_file_manager.py#LL98C6-L98C6
111
- uploaded_file_rec = UploadedFileRec(None, file_name, file_extension, file_data)
112
- uploaded_file_rec = manager.add_file(
113
- ctx.session_id,
114
- ComponentsKeys.FILE_UPLOADER,
115
- uploaded_file_rec,
116
- )
117
- return UploadedFile(uploaded_file_rec)
118
-
119
- def filter_zip_file(
120
- file: UploadedFile,
121
- supabase: Client,
122
- vector_store: SupabaseVectorStore,
123
- ) -> None:
124
- """Unzip the zip file then filter each unzipped file.
125
-
126
- Parameters
127
- ----------
128
- file : UploadedFile
129
- The uploaded file from the file uploader.
130
- supabase : Client
131
- The supabase client.
132
- vector_store : SupabaseVectorStore
133
- The vector store in the database.
134
- """
135
-
136
- with zipfile.ZipFile(file, "r") as z:
137
- unzipped_files = z.namelist()
138
- for unzipped_file in unzipped_files:
139
- with z.open(unzipped_file, "r") as f:
140
- filter_file(f, supabase, vector_store)
141
-
142
- def filter_file(file, supabase, vector_store):
143
- # Streamlit file uploads are of type `UploadedFile` which has the
144
- # necessary methods and attributes for this app to work.
145
- if not isinstance(file, UploadedFile):
146
- file = file_to_uploaded_file(file)
147
-
148
- file_extension = os.path.splitext(file.name)[-1]
149
- if file_extension == ".zip":
150
- filter_zip_file(file, supabase, vector_store)
151
- return True
152
-
153
- if file_already_exists(supabase, file):
154
- st.write(f"😎 {file.name} is already in the database.")
155
- return False
156
-
157
- if file.size < 1:
158
- st.write(f"💨 {file.name} is empty.")
159
- return False
160
-
161
- if file_extension in file_processors:
162
- if st.secrets.self_hosted == "false":
163
- file_processors[file_extension](vector_store, file, stats_db=supabase)
164
- else:
165
- file_processors[file_extension](vector_store, file, stats_db=None)
166
- st.write(f"✅ {file.name} ")
167
- return True
168
-
169
- st.write(f"❌ {file.name} is not a valid file type.")
170
- return False
171
-
172
- def url_uploader(supabase, vector_store):
173
- url = st.text_area("**Add an url**",placeholder="https://meraGPT.com")
174
- button = st.button("Add the URL to the database")
175
-
176
- if button:
177
- if not st.session_state["overused"]:
178
- html = get_html(url)
179
- if html:
180
- st.write(f"Getting content ... {url} ")
181
- try:
182
- file, temp_file_path = create_html_file(url, html)
183
- except UnicodeEncodeError as e:
184
- st.write(f"❌ Error encoding character: {e}")
185
- file, temp_file_path = create_html_file(url, html)
186
- ret = filter_file(file, supabase, vector_store)
187
- delete_tempfile(temp_file_path, url, ret)
188
- else:
189
- st.write(f"❌ Failed to access to {url} .")
190
- else:
191
- st.write("You have reached your daily limit. Please come back later or self host the solution.")