Spaces:
Running
Running
| # main.py | |
| import os | |
| import tempfile | |
| import streamlit as st | |
| from files import file_uploader, url_uploader | |
| from question import chat_with_doc | |
| from brain import brain | |
| from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings | |
| from langchain.vectorstores import SupabaseVectorStore | |
| from supabase import Client, create_client | |
| from explorer import view_document | |
| from stats import get_usage_today | |
| from st_login_form import login_form | |
| supabase_url = st.secrets.SUPABASE_URL | |
| supabase_key = st.secrets.SUPABASE_KEY | |
| openai_api_key = st.secrets.openai_api_key | |
| anthropic_api_key = st.secrets.anthropic_api_key | |
| hf_api_key = st.secrets.hf_api_key | |
| supabase: Client = create_client(supabase_url, supabase_key) | |
| self_hosted = st.secrets.self_hosted | |
| # embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
| embeddings = HuggingFaceInferenceAPIEmbeddings( | |
| api_key=hf_api_key, | |
| model_name="BAAI/bge-large-en-v1.5" | |
| ) | |
| vector_store = SupabaseVectorStore(supabase, embeddings, query_name='match_documents', table_name="documents") | |
| models = ["llama-2"] | |
| if openai_api_key: | |
| models += ["gpt-3.5-turbo", "gpt-4"] | |
| if anthropic_api_key: | |
| models += ["claude-v1", "claude-v1.3", | |
| "claude-instant-v1-100k", "claude-instant-v1.1-100k"] | |
| # Set the theme | |
| st.set_page_config( | |
| page_title="meraKB", | |
| layout="wide", | |
| initial_sidebar_state="expanded", | |
| ) | |
| st.title("🧠 meraKB - Your digital brain 🧠") | |
| st.markdown("Store your knowledge in a vector store and chat with it.") | |
| if self_hosted == "false": | |
| st.markdown('**📢 Note: In the public demo, access to functionality is restricted. You can only use the GPT-3.5-turbo model and upload files up to 1Mb. To use more models and upload larger files, consider self-hosting meraKB.**') | |
| st.markdown("---\n\n") | |
| st.session_state["overused"] = False | |
| if self_hosted == "false": | |
| usage = get_usage_today(supabase) | |
| if usage > st.secrets.usage_limit: | |
| st.markdown( | |
| f"<span style='color:red'>You have used {usage} tokens today, which is more than your daily limit of {st.secrets.usage_limit} tokens. Please come back later or consider self-hosting.</span>", unsafe_allow_html=True) | |
| st.session_state["overused"] = True | |
| else: | |
| st.markdown(f"<span style='color:blue'>Usage today: {usage} tokens out of {st.secrets.usage_limit}</span>", unsafe_allow_html=True) | |
| st.write("---") | |
| client = login_form() | |
| if st.session_state["authenticated"]: | |
| if st.session_state["username"]: | |
| st.success(f"Welcome {st.session_state['username']}") | |
| else: | |
| st.session_state["username"] = 'guest' | |
| st.success("Welcome guest") | |
| # Initialize session state variables | |
| if 'model' not in st.session_state: | |
| st.session_state['model'] = "llama-2" | |
| if 'temperature' not in st.session_state: | |
| st.session_state['temperature'] = 0.1 | |
| if 'chunk_size' not in st.session_state: | |
| st.session_state['chunk_size'] = 500 | |
| if 'chunk_overlap' not in st.session_state: | |
| st.session_state['chunk_overlap'] = 0 | |
| if 'max_tokens' not in st.session_state: | |
| st.session_state['max_tokens'] = 500 | |
| # Create a radio button for user to choose between adding knowledge or asking a question | |
| user_choice = st.radio( | |
| "Choose an action", ('Add Knowledge', 'Chat with your Brain', 'Forget', "Explore")) | |
| st.markdown("---\n\n") | |
| if user_choice == 'Add Knowledge': | |
| # Display chunk size and overlap selection only when adding knowledge | |
| st.sidebar.title("Configuration") | |
| st.sidebar.markdown( | |
| "Choose your chunk size and overlap for adding knowledge.") | |
| st.session_state['chunk_size'] = st.sidebar.slider( | |
| "Select Chunk Size", 100, 1000, st.session_state['chunk_size'], 50) | |
| st.session_state['chunk_overlap'] = st.sidebar.slider( | |
| "Select Chunk Overlap", 0, 100, st.session_state['chunk_overlap'], 10) | |
| # Create two columns for the file uploader and URL uploader | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| file_uploader(supabase, vector_store) | |
| with col2: | |
| url_uploader(supabase, vector_store) | |
| elif user_choice == 'Chat with your Brain': | |
| # Display model and temperature selection only when asking questions | |
| st.sidebar.title("Configuration") | |
| st.sidebar.markdown( | |
| "Choose your model and temperature for asking questions.") | |
| if self_hosted != "false": | |
| st.session_state['model'] = st.sidebar.selectbox( | |
| "Select Model", models, index=(models).index(st.session_state['model'])) | |
| else: | |
| st.sidebar.write("**Model**: gpt-3.5-turbo") | |
| st.sidebar.write("**Self Host to unlock more models such as claude-v1 and GPT4**") | |
| st.session_state['model'] = "gpt-3.5-turbo" | |
| st.session_state['temperature'] = st.sidebar.slider( | |
| "Select Temperature", 0.1, 1.0, st.session_state['temperature'], 0.1) | |
| if st.secrets.self_hosted != "false": | |
| st.session_state['max_tokens'] = st.sidebar.slider( | |
| "Select Max Tokens", 500, 4000, st.session_state['max_tokens'], 500) | |
| else: | |
| st.session_state['max_tokens'] = 500 | |
| chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase) | |
| elif user_choice == 'Forget': | |
| st.sidebar.title("Configuration") | |
| brain(supabase) | |
| elif user_choice == 'Explore': | |
| st.sidebar.title("Configuration") | |
| view_document(supabase) | |
| st.markdown("---\n\n") | |
| else: | |
| st.error("Not authenticated") |