File size: 6,012 Bytes
e70bf91
 
 
 
 
 
 
 
913886b
e70bf91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c7c7db
 
 
 
29b1347
 
2c7c7db
e70bf91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
becc01f
 
 
 
 
 
 
 
e70bf91
392146d
e70bf91
 
 
 
 
baa776d
e70bf91
 
becc01f
 
 
 
 
 
 
392146d
a746632
 
392146d
a746632
392146d
e70bf91
 
 
 
 
 
becc01f
99dbe6f
becc01f
e70bf91
 
 
 
 
 
 
 
becc01f
 
 
e70bf91
 
 
 
baa776d
 
 
 
 
e70bf91
 
 
 
 
 
 
 
 
baa776d
 
 
 
 
913886b
e70bf91
 
 
 
 
 
 
 
 
becc01f
 
e70bf91
 
 
 
a746632
 
 
 
 
 
 
becc01f
 
 
 
a746632
e70bf91
 
 
 
 
 
 
 
 
 
a746632
 
 
 
 
 
 
 
 
 
becc01f
a746632
 
 
e70bf91
 
becc01f
e70bf91
 
 
c58507e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import PIL
from PIL import Image
import os
import tempfile
import zipfile
import shutil
from pathlib import Path
import numpy as np

# Define target sizes for different viewports
SIZES = [
    (480, 423),
    (696, 613),
    (960, 846),
    (1095, 965),
    (1280, 1128),
    (1440, 1269),
    (1670, 1472),
    (1870, 1648),
    (2048, 1805)
]

def resize_image(img, target_size):
    """Resize image maintaining aspect ratio"""
    img_copy = img.copy()
    return img_copy.resize(target_size, PIL.Image.Resampling.LANCZOS)

def generate_html_snippet(image_path_prefix):
    """Generate HTML code snippet with srcset"""
    srcset_items = [f"{image_path_prefix}-{w}x{h}.jpg {w}w" for w, h in SIZES]
    srcset_str = ",\n        ".join(srcset_items)
    
    sizes_items = [
        f"(max-width: {w}px) {w}px" for w, _ in SIZES[:-1]
    ] + [f"{SIZES[-1][0]}px"]
    sizes_str = ",\n        ".join(sizes_items)
    
    # Using min-width for better responsive behavior
    # sizes_str = "(min-width: 1000px) 45vw, (min-width: 780px) 696px, (min-width: 580px) 480px, calc(100vw - 60px)"
    
    # Use the middle size as default src
    default_size = SIZES[4]  # 1280x1128
    
    html = f'''<!-- Responsive Image -->
<img 
    src="{image_path_prefix}-{default_size[0]}x{default_size[1]}.jpg"
    srcset="
        {srcset_str}
    "
    sizes="
        {sizes_str}
    "
    alt="Your image description"
    style="max-width: 100%; height: auto;"
>'''
    
    return html

def get_path_components(filepath):
    """Split filepath into directory and filename"""
    dirpath = os.path.dirname(filepath)
    filename = os.path.basename(filepath)
    base_filename = os.path.splitext(filename)[0]
    return dirpath, base_filename

def process_image(input_img, input_path):
    """Main processing function"""
    if input_img is None:
        return None, None, "Please upload an image"
    
    # Create temporary directory for processed images
    temp_dir = tempfile.mkdtemp()
    zip_path = os.path.join(temp_dir, "responsive_images.zip")
    processed_paths = []  # Initialize the list outside try block
    
    try:
        # Get path components
        if input_path and input_path.strip():
            dirpath, base_filename = get_path_components(input_path.strip())
        else:
            # If no path provided, use default
            dirpath, base_filename = "", "image"
            
        # Convert to PIL Image if needed
        if isinstance(input_img, np.ndarray):
            img = Image.fromarray(input_img)
        else:
            img = input_img
            
        # Convert to RGB if necessary
        if img.mode != 'RGB':
            img = img.convert('RGB')
        
        # Process each size
        for width, height in SIZES:
            # For zip file, only use filename without path
            output_path = os.path.join(temp_dir, f"{base_filename}-{width}x{height}.jpg")
            resized = resize_image(img, (width, height))
            resized.save(output_path, "JPEG", quality=90)
            processed_paths.append(output_path)
        
        # Create zip file
        with zipfile.ZipFile(zip_path, 'w') as zf:
            for path in processed_paths:
                zf.write(path, os.path.basename(path))
        
        # Generate HTML snippet using full path
        full_path = dirpath + ("/" if dirpath else "") + base_filename
        html_snippet = generate_html_snippet(full_path)
        
        return zip_path, html_snippet, "Processing completed successfully!"
        
    except Exception as e:
        if os.path.exists(zip_path):
            try:
                os.remove(zip_path)
            except:
                pass
        return None, None, f"Error processing image: {str(e)}"
    
    finally:
        # Clean up temporary files except zip
        for path in processed_paths:
            try:
                os.remove(path)
            except:
                pass
        # Try to remove the temp directory if it's empty
        try:
            os.rmdir(temp_dir)
        except:
            pass

# Create Gradio interface
with gr.Blocks(title="Responsive Image Generator") as app:
    gr.Markdown("""
    # Responsive Image Generator
    
    Upload an image to generate optimized versions for different viewport sizes. 
    You'll receive:
    1. A ZIP file containing all sized versions
    2. HTML code snippet with proper srcset attributes
    
    Optional: Specify the full path where images will be stored (e.g., 'assets/images/about/mock-up.png')
    """)
    
    with gr.Row():
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Upload Original Image",
                    type="pil",
                    show_label=True
                )
            with gr.Row():
                input_path = gr.Textbox(
                    label="Image Path (optional)",
                    placeholder="e.g., assets/images/about/mock-up.png",
                    value=""
                )
            process_btn = gr.Button("Process Image")
        
        with gr.Column():
            output_zip = gr.File(label="Download Processed Images")
            output_html = gr.Code(
                label="HTML Code Snippet", 
                language="html"
            )
            output_message = gr.Textbox(label="Status")
    
    def handle_upload(img):
        """Handle image upload to get filename"""
        if isinstance(img, dict) and 'name' in img:
            return img['name']
        return ""
    
    # Update filename when image is uploaded
    input_image.upload(
        fn=handle_upload,
        inputs=[input_image],
        outputs=[input_path]
    )
    
    # Process button click
    process_btn.click(
        fn=process_image,
        inputs=[input_image, input_path],
        outputs=[output_zip, output_html, output_message]
    )

# Launch the app with share=True for public access
app.launch(share=True)