Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,13 +11,11 @@ else:
|
|
| 11 |
print("Using CPU")
|
| 12 |
|
| 13 |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
|
| 14 |
-
|
| 15 |
|
| 16 |
def generate(prompt, model_precision_type, max_new_tokens, repetition_penalty, temperature, top_p, top_k, seed):
|
| 17 |
-
|
| 18 |
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype=model_precision_type)
|
| 19 |
model.to(device)
|
| 20 |
-
|
| 21 |
input_text = f"Expand the following prompt to add more detail: {prompt}"
|
| 22 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
| 23 |
|
|
@@ -26,7 +24,7 @@ def generate(prompt, model_precision_type, max_new_tokens, repetition_penalty, t
|
|
| 26 |
torch.manual_seed(seed)
|
| 27 |
else:
|
| 28 |
torch.manual_seed(seed)
|
| 29 |
-
|
| 30 |
outputs = model.generate(
|
| 31 |
input_ids,
|
| 32 |
max_new_tokens=max_new_tokens,
|
|
@@ -38,18 +36,17 @@ def generate(prompt, model_precision_type, max_new_tokens, repetition_penalty, t
|
|
| 38 |
)
|
| 39 |
|
| 40 |
better_prompt = tokenizer.decode(outputs[0])
|
| 41 |
-
better_prompt = better_prompt.replace("<pad>", "").replace("
|
| 42 |
return better_prompt
|
| 43 |
|
| 44 |
-
|
| 45 |
prompt = gr.Textbox(label="Prompt", interactive=True)
|
| 46 |
|
| 47 |
-
model_precision_type = gr.Dropdown(choices=[('fp16', torch.float16), ('fp32', torch.float32)], type="value", value=torch.float16, label="Model Precision", info="fp16 is faster, fp32 is more precise")
|
| 48 |
|
| 49 |
max_new_tokens = gr.Slider(value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output")
|
| 50 |
-
|
| 51 |
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself")
|
| 52 |
-
|
| 53 |
temperature = gr.Slider(value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature", info="Higher values produce more diverse outputs")
|
| 54 |
|
| 55 |
top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P", info="Higher values sample more low-probability tokens")
|
|
@@ -59,15 +56,7 @@ top_k = gr.Slider(value=1, minimum=1, maximum=100, step=1, interactive=True, lab
|
|
| 59 |
seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
|
| 60 |
|
| 61 |
examples = [
|
| 62 |
-
[
|
| 63 |
-
"A storefront with 'Text to Image' written on it.",
|
| 64 |
-
512,
|
| 65 |
-
1.2,
|
| 66 |
-
0.5,
|
| 67 |
-
1,
|
| 68 |
-
50,
|
| 69 |
-
42,
|
| 70 |
-
]
|
| 71 |
]
|
| 72 |
|
| 73 |
gr.Interface(
|
|
|
|
| 11 |
print("Using CPU")
|
| 12 |
|
| 13 |
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
|
|
|
|
| 14 |
|
| 15 |
def generate(prompt, model_precision_type, max_new_tokens, repetition_penalty, temperature, top_p, top_k, seed):
|
|
|
|
| 16 |
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype=model_precision_type)
|
| 17 |
model.to(device)
|
| 18 |
+
|
| 19 |
input_text = f"Expand the following prompt to add more detail: {prompt}"
|
| 20 |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
| 21 |
|
|
|
|
| 24 |
torch.manual_seed(seed)
|
| 25 |
else:
|
| 26 |
torch.manual_seed(seed)
|
| 27 |
+
|
| 28 |
outputs = model.generate(
|
| 29 |
input_ids,
|
| 30 |
max_new_tokens=max_new_tokens,
|
|
|
|
| 36 |
)
|
| 37 |
|
| 38 |
better_prompt = tokenizer.decode(outputs[0])
|
| 39 |
+
better_prompt = better_prompt.replace("<pad>", "").replace("<|endoftext|>", "")
|
| 40 |
return better_prompt
|
| 41 |
|
|
|
|
| 42 |
prompt = gr.Textbox(label="Prompt", interactive=True)
|
| 43 |
|
| 44 |
+
model_precision_type = gr.Dropdown(choices=[('fp16', torch.float16), ('fp32', torch.float32)], type="value", value=torch.float16, label="Model Precision", info="fp16 is faster, fp32 is more precise")
|
| 45 |
|
| 46 |
max_new_tokens = gr.Slider(value=512, minimum=250, maximum=512, step=1, interactive=True, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output")
|
| 47 |
+
|
| 48 |
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2, step=0.05, interactive=True, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself")
|
| 49 |
+
|
| 50 |
temperature = gr.Slider(value=0.5, minimum=0, maximum=1, step=0.05, interactive=True, label="Temperature", info="Higher values produce more diverse outputs")
|
| 51 |
|
| 52 |
top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, interactive=True, label="Top P", info="Higher values sample more low-probability tokens")
|
|
|
|
| 56 |
seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
|
| 57 |
|
| 58 |
examples = [
|
| 59 |
+
["A storefront with 'Text to Image' written on it.", "fp16", 512, 1.2, 0.5, 1, 50, 42]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
]
|
| 61 |
|
| 62 |
gr.Interface(
|