Spaces:
Running
Running
File size: 3,561 Bytes
f97bf68 69855af 64d6c72 f97bf68 b0413b4 00b74b1 4c55de4 7061623 4c55de4 353fc0a e857352 4c55de4 21116ac 7e99bc1 4c55de4 244f082 e6fb950 fb18417 c435396 21116ac c435396 21116ac c435396 f97bf68 5709663 7eddf91 fb18417 7eddf91 1aa631a a0c6e41 5709663 e6fb950 2431dd6 9a18b41 1aa631a 7e99bc1 7eddf91 1aa631a 7eddf91 1aa631a e857352 f97bf68 244f082 e8b0857 244f082 f97bf68 1aa631a f97bf68 353fc0a 78cc8b8 f97bf68 e8b0857 f97bf68 21116ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
import torch
import random
import transformers
from transformers import T5Tokenizer, T5ForConditionalGeneration
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1")
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype="auto")
model.to(device)
def generate(your_prompt, task_prefix, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed):
if seed == 0:
seed = random.randint(1, 2**32-1)
transformers.set_seed(seed)
if model_precision_type == "fp16":
dtype = torch.float16
elif model_precision_type == "fp32":
dtype = torch.float32
model.to(dtype)
repetition_penalty = float(repetition_penalty)
input_text = f"{task_prefix}: {your_prompt}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
outputs = model.generate(
input_ids,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
)
better_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
return better_prompt
your_prompt = gr.Textbox(label="Your Prompt", info="Your Prompt that you wanna make better")
task_prefix = gr.Textbox(label="Task Prefix", info="The prompt prefix for how the AI should make yours better",value="Expand the following prompt to add more detail")
max_new_tokens = gr.Slider(value=512, minimum=25, maximum=512, step=1, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output")
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself")
temperature = gr.Slider(value=0.7, minimum=0, maximum=1, step=0.05, label="Temperature", info="Higher values produce more diverse outputs")
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming")
top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, label="Top P", info="Higher values sample more low-probability tokens")
top_k = gr.Slider(value=50, minimum=1, maximum=100, step=1, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens")
seed = gr.Slider(value=42, minimum=0, maximum=2**32-1, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
examples = [
["A storefront with 'Text to Image' written on it.", "Expand the following prompt to add more detail", 512, 1.2, 0.5, "fp16", 1, 50, 42]
]
gr.Interface(
fn=generate,
inputs=[your_prompt, task_prefix, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed],
outputs=gr.Textbox(label="Better Prompt"),
title="SuperPrompt-v1",
description='Make your prompts more detailed! <br> <a href="https://github.com/Nick088Official/SuperPrompt-v1">Github Repository & Model used</a> <br> <a href="https://brianfitzgerald.xyz/prompt-augmentation/">Model Blog</a> <br> Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)',
examples=examples,
).launch(share=True) |