File size: 3,561 Bytes
f97bf68
 
69855af
64d6c72
f97bf68
 
b0413b4
 
 
 
 
 
00b74b1
4c55de4
7061623
4c55de4
 
353fc0a
e857352
4c55de4
 
 
21116ac
7e99bc1
 
 
 
 
4c55de4
244f082
e6fb950
 
fb18417
c435396
21116ac
c435396
 
 
 
 
 
 
 
 
21116ac
c435396
 
f97bf68
5709663
7eddf91
fb18417
7eddf91
1aa631a
a0c6e41
5709663
e6fb950
2431dd6
9a18b41
1aa631a
7e99bc1
 
7eddf91
1aa631a
7eddf91
1aa631a
e857352
f97bf68
244f082
e8b0857
244f082
f97bf68
1aa631a
f97bf68
353fc0a
78cc8b8
f97bf68
e8b0857
f97bf68
21116ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import gradio as gr
import torch
import random
import transformers
from transformers import T5Tokenizer, T5ForConditionalGeneration

if torch.cuda.is_available():
    device = "cuda"
    print("Using GPU")
else:
    device = "cpu"
    print("Using CPU")

tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1")
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype="auto")
model.to(device)

def generate(your_prompt, task_prefix, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed):
    
    if seed == 0:
        seed = random.randint(1, 2**32-1)
    transformers.set_seed(seed)
    
    if model_precision_type == "fp16":
        dtype = torch.float16
    elif model_precision_type == "fp32":
        dtype = torch.float32

    model.to(dtype)

    repetition_penalty = float(repetition_penalty)

    input_text = f"{task_prefix}: {your_prompt}"
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
        
    outputs = model.generate(
        input_ids,
        max_new_tokens=max_new_tokens,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
    )
        
    better_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return better_prompt


your_prompt = gr.Textbox(label="Your Prompt", info="Your Prompt that you wanna make better")

task_prefix = gr.Textbox(label="Task Prefix", info="The prompt prefix for how the AI should make yours better",value="Expand the following prompt to add more detail")

max_new_tokens = gr.Slider(value=512, minimum=25, maximum=512, step=1, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output")
    
repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself")

temperature = gr.Slider(value=0.7, minimum=0, maximum=1, step=0.05, label="Temperature", info="Higher values produce more diverse outputs")

model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming")

top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, label="Top P", info="Higher values sample more low-probability tokens")

top_k = gr.Slider(value=50, minimum=1, maximum=100, step=1, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens")

seed = gr.Slider(value=42, minimum=0, maximum=2**32-1, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")

examples = [
    ["A storefront with 'Text to Image' written on it.", "Expand the following prompt to add more detail", 512, 1.2, 0.5, "fp16", 1, 50, 42]
]

gr.Interface(
    fn=generate,
    inputs=[your_prompt, task_prefix, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed],
    outputs=gr.Textbox(label="Better Prompt"),
    title="SuperPrompt-v1",
    description='Make your prompts more detailed! <br> <a href="https://github.com/Nick088Official/SuperPrompt-v1">Github Repository & Model used</a> <br> <a href="https://brianfitzgerald.xyz/prompt-augmentation/">Model Blog</a> <br> Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)',
    examples=examples,
).launch(share=True)