File size: 3,233 Bytes
f97bf68
 
69855af
f97bf68
 
b0413b4
 
 
 
 
 
 
 
 
 
 
 
f97bf68
244f082
 
 
 
 
 
 
ead2968
244f082
f97bf68
244f082
f97bf68
 
244f082
ead2968
69855af
a81c6ef
ead2968
 
 
244f082
 
 
 
 
 
 
 
 
 
f97bf68
 
 
244f082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8caf209
 
 
 
 
 
 
 
 
 
 
f97bf68
 
69855af
244f082
 
 
ead2968
 
 
 
 
a81c6ef
6753cc6
244f082
 
f97bf68
 
 
244f082
 
 
f97bf68
 
244f082
f97bf68
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import torch
import random
from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", torch_dtype=torch.float16)

if torch.cuda.is_available():
    device = "cuda"
    print("Using GPU")
else:
    device = "cpu"
    print("Using CPU")

model.to(device)

def generate(
    prompt,
    history,
    max_new_tokens,
    repetition_penalty,
    temperature,
    top_p,
    top_k,
    random_seed,
    seed,
):

    input_text = f"{prompt}, {history}"
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)

    if random_seed:
        seed = random.randint(1, 100000)
        torch.manual_seed(seed)
    else:
        torch.manual_seed(seed)
        
    outputs = model.generate(
        input_ids,
        max_new_tokens=max_new_tokens,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
    )

    better_prompt = tokenizer.decode(outputs[0])
    return better_prompt

additional_inputs = [
    gr.Slider(
        value=512,
        minimum=250,
        maximum=512,
        step=1,
        interactive=True,
        label="Max New Tokens",
        info="The maximum numbers of new tokens, controls how long is the output",
    ),
    gr.Slider(
        value=1.2,
        minimum=0,
        maximum=2,
        step=0.05,
        interactive=True,
        label="Repetition Penalty",
        info="Penalize repeated tokens, making the AI repeat less itself",
    ),
    gr.Slider(
        value=0.5,
        minimum=0,
        maximum=1,
        step=0.05,
        interactive=True,
        label="Temperature",
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        value=1,
        minimum=0,
        maximum=2,
        step=0.05,
        interactive=True,
        label="Top P",
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        value=1,
        minimum=1,
        maximum=100,
        step=1,
        interactive=True,
        label="Top K",
        info="Higher k means more diverse outputs by considering a range of tokens",
    ),
    gr.Checkbox(
        value=False,
        label="Use Random Seed",
        info="Check to use a random seed which is a start point for the generation process",
    ),
    gr.Number(
        value=42,
        interactive=True,
        label="Manual Seed",
        info="A starting point to initiate the generation process"
    ),
]


examples = [
    [
        "Expand the following prompt to add more detail: A storefront with 'Text to Image' written on it.",
        512,
        1.2,
        0.5,
        1,
        50,
        False,
        42,
    ]
]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(
        show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"
    ),
    additional_inputs=additional_inputs,
    title="SuperPrompt-v1",
    description="Make your prompts more detailed!",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)