Spaces:
Runtime error
Runtime error
namespace fastCos | |
{ | |
int perf(bool NextFloat) | |
{ | |
const float begin = -glm::pi<float>(); | |
const float end = glm::pi<float>(); | |
float result = 0.f; | |
const std::clock_t timestamp1 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::fastCos(i); | |
const std::clock_t timestamp2 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::cos(i); | |
const std::clock_t timestamp3 = std::clock(); | |
const std::clock_t time_fast = timestamp2 - timestamp1; | |
const std::clock_t time_default = timestamp3 - timestamp2; | |
std::printf("fastCos Time %d clocks\n", static_cast<int>(time_fast)); | |
std::printf("cos Time %d clocks\n", static_cast<int>(time_default)); | |
return time_fast <= time_default ? 0 : 1; | |
} | |
}//namespace fastCos | |
namespace fastSin | |
{ | |
/* | |
float sin(float x) { | |
float temp; | |
temp = (x + M_PI) / ((2 * M_PI) - M_PI); | |
return limited_sin((x + M_PI) - ((2 * M_PI) - M_PI) * temp)); | |
} | |
*/ | |
int perf(bool NextFloat) | |
{ | |
const float begin = -glm::pi<float>(); | |
const float end = glm::pi<float>(); | |
float result = 0.f; | |
const std::clock_t timestamp1 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::fastSin(i); | |
const std::clock_t timestamp2 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::sin(i); | |
const std::clock_t timestamp3 = std::clock(); | |
const std::clock_t time_fast = timestamp2 - timestamp1; | |
const std::clock_t time_default = timestamp3 - timestamp2; | |
std::printf("fastSin Time %d clocks\n", static_cast<int>(time_fast)); | |
std::printf("sin Time %d clocks\n", static_cast<int>(time_default)); | |
return time_fast <= time_default ? 0 : 1; | |
} | |
}//namespace fastSin | |
namespace fastTan | |
{ | |
int perf(bool NextFloat) | |
{ | |
const float begin = -glm::pi<float>(); | |
const float end = glm::pi<float>(); | |
float result = 0.f; | |
const std::clock_t timestamp1 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::fastTan(i); | |
const std::clock_t timestamp2 = std::clock(); | |
for (float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::tan(i); | |
const std::clock_t timestamp3 = std::clock(); | |
const std::clock_t time_fast = timestamp2 - timestamp1; | |
const std::clock_t time_default = timestamp3 - timestamp2; | |
std::printf("fastTan Time %d clocks\n", static_cast<int>(time_fast)); | |
std::printf("tan Time %d clocks\n", static_cast<int>(time_default)); | |
return time_fast <= time_default ? 0 : 1; | |
} | |
}//namespace fastTan | |
namespace fastAcos | |
{ | |
int perf(bool NextFloat) | |
{ | |
const float begin = -glm::pi<float>(); | |
const float end = glm::pi<float>(); | |
float result = 0.f; | |
const std::clock_t timestamp1 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::fastAcos(i); | |
const std::clock_t timestamp2 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::acos(i); | |
const std::clock_t timestamp3 = std::clock(); | |
const std::clock_t time_fast = timestamp2 - timestamp1; | |
const std::clock_t time_default = timestamp3 - timestamp2; | |
std::printf("fastAcos Time %d clocks\n", static_cast<int>(time_fast)); | |
std::printf("acos Time %d clocks\n", static_cast<int>(time_default)); | |
return time_fast <= time_default ? 0 : 1; | |
} | |
}//namespace fastAcos | |
namespace fastAsin | |
{ | |
int perf(bool NextFloat) | |
{ | |
const float begin = -glm::pi<float>(); | |
const float end = glm::pi<float>(); | |
float result = 0.f; | |
const std::clock_t timestamp1 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::fastAsin(i); | |
const std::clock_t timestamp2 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::asin(i); | |
const std::clock_t timestamp3 = std::clock(); | |
const std::clock_t time_fast = timestamp2 - timestamp1; | |
const std::clock_t time_default = timestamp3 - timestamp2; | |
std::printf("fastAsin Time %d clocks\n", static_cast<int>(time_fast)); | |
std::printf("asin Time %d clocks\n", static_cast<int>(time_default)); | |
return time_fast <= time_default ? 0 : 1; | |
} | |
}//namespace fastAsin | |
namespace fastAtan | |
{ | |
int perf(bool NextFloat) | |
{ | |
const float begin = -glm::pi<float>(); | |
const float end = glm::pi<float>(); | |
float result = 0.f; | |
const std::clock_t timestamp1 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::fastAtan(i); | |
const std::clock_t timestamp2 = std::clock(); | |
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f) | |
result = glm::atan(i); | |
const std::clock_t timestamp3 = std::clock(); | |
const std::clock_t time_fast = timestamp2 - timestamp1; | |
const std::clock_t time_default = timestamp3 - timestamp2; | |
std::printf("fastAtan Time %d clocks\n", static_cast<int>(time_fast)); | |
std::printf("atan Time %d clocks\n", static_cast<int>(time_default)); | |
return time_fast <= time_default ? 0 : 1; | |
} | |
}//namespace fastAtan | |
namespace taylorCos | |
{ | |
using glm::qualifier; | |
using glm::length_t; | |
glm::vec4 const AngleShift(0.0f, glm::half_pi<float>(), glm::pi<float>(), glm::three_over_two_pi<float>()); | |
template<length_t L, typename T, qualifier Q> | |
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> taylorSeriesNewCos(glm::vec<L, T, Q> const& x) | |
{ | |
glm::vec<L, T, Q> const Powed2(x * x); | |
glm::vec<L, T, Q> const Powed4(Powed2 * Powed2); | |
glm::vec<L, T, Q> const Powed6(Powed4 * Powed2); | |
glm::vec<L, T, Q> const Powed8(Powed4 * Powed4); | |
return static_cast<T>(1) | |
- Powed2 * static_cast<T>(0.5) | |
+ Powed4 * static_cast<T>(0.04166666666666666666666666666667) | |
- Powed6 * static_cast<T>(0.00138888888888888888888888888889) | |
+ Powed8 * static_cast<T>(2.4801587301587301587301587301587e-5); | |
} | |
template<length_t L, typename T, qualifier Q> | |
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> taylorSeriesNewCos6(glm::vec<L, T, Q> const& x) | |
{ | |
glm::vec<L, T, Q> const Powed2(x * x); | |
glm::vec<L, T, Q> const Powed4(Powed2 * Powed2); | |
glm::vec<L, T, Q> const Powed6(Powed4 * Powed2); | |
return static_cast<T>(1) | |
- Powed2 * static_cast<T>(0.5) | |
+ Powed4 * static_cast<T>(0.04166666666666666666666666666667) | |
- Powed6 * static_cast<T>(0.00138888888888888888888888888889); | |
} | |
template<glm::length_t L, qualifier Q> | |
GLM_FUNC_QUALIFIER glm::vec<L, float, Q> fastAbs(glm::vec<L, float, Q> x) | |
{ | |
int* Pointer = reinterpret_cast<int*>(&x[0]); | |
Pointer[0] &= 0x7fffffff; | |
Pointer[1] &= 0x7fffffff; | |
Pointer[2] &= 0x7fffffff; | |
Pointer[3] &= 0x7fffffff; | |
return x; | |
} | |
template<glm::length_t L, typename T, qualifier Q> | |
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> fastCosNew(glm::vec<L, T, Q> const& x) | |
{ | |
glm::vec<L, T, Q> const Angle0_PI(fastAbs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); | |
return taylorSeriesNewCos6(x); | |
/* | |
vec<L, bool, Q> const FirstQuarterPi(lessThanEqual(Angle0_PI, vec<L, T, Q>(glm::half_pi<T>()))); | |
vec<L, T, Q> const RevertAngle(mix(vec<L, T, Q>(glm::pi<T>()), vec<L, T, Q>(0), FirstQuarterPi)); | |
vec<L, T, Q> const ReturnSign(mix(vec<L, T, Q>(-1), vec<L, T, Q>(1), FirstQuarterPi)); | |
vec<L, T, Q> const SectionAngle(RevertAngle - Angle0_PI); | |
return ReturnSign * taylorSeriesNewCos(SectionAngle); | |
*/ | |
} | |
int perf_fastCosNew(float Begin, float End, std::size_t Samples) | |
{ | |
std::vector<glm::vec4> Results; | |
Results.resize(Samples); | |
float const Steps = (End - Begin) / static_cast<float>(Samples); | |
std::clock_t const TimeStampBegin = std::clock(); | |
for(std::size_t i = 0; i < Samples; ++i) | |
Results[i] = fastCosNew(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); | |
std::clock_t const TimeStampEnd = std::clock(); | |
std::printf("fastCosNew %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); | |
int Error = 0; | |
for(std::size_t i = 0; i < Samples; ++i) | |
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
return Error; | |
} | |
template<length_t L, typename T, qualifier Q> | |
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> deterministic_fmod(glm::vec<L, T, Q> const& x, T y) | |
{ | |
return x - y * trunc(x / y); | |
} | |
template<length_t L, typename T, qualifier Q> | |
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> fastCosDeterminisctic(glm::vec<L, T, Q> const& x) | |
{ | |
glm::vec<L, T, Q> const Angle0_PI(abs(deterministic_fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); | |
glm::vec<L, bool, Q> const FirstQuarterPi(lessThanEqual(Angle0_PI, glm::vec<L, T, Q>(glm::half_pi<T>()))); | |
glm::vec<L, T, Q> const RevertAngle(mix(glm::vec<L, T, Q>(glm::pi<T>()), glm::vec<L, T, Q>(0), FirstQuarterPi)); | |
glm::vec<L, T, Q> const ReturnSign(mix(glm::vec<L, T, Q>(-1), glm::vec<L, T, Q>(1), FirstQuarterPi)); | |
glm::vec<L, T, Q> const SectionAngle(RevertAngle - Angle0_PI); | |
return ReturnSign * taylorSeriesNewCos(SectionAngle); | |
} | |
int perf_fastCosDeterminisctic(float Begin, float End, std::size_t Samples) | |
{ | |
std::vector<glm::vec4> Results; | |
Results.resize(Samples); | |
float const Steps = (End - Begin) / static_cast<float>(Samples); | |
std::clock_t const TimeStampBegin = std::clock(); | |
for(std::size_t i = 0; i < Samples; ++i) | |
Results[i] = taylorCos::fastCosDeterminisctic(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); | |
std::clock_t const TimeStampEnd = std::clock(); | |
std::printf("fastCosDeterminisctic %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); | |
int Error = 0; | |
for(std::size_t i = 0; i < Samples; ++i) | |
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
return Error; | |
} | |
template<length_t L, typename T, qualifier Q> | |
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> taylorSeriesRefCos(glm::vec<L, T, Q> const& x) | |
{ | |
return static_cast<T>(1) | |
- (x * x) / glm::factorial(static_cast<T>(2)) | |
+ (x * x * x * x) / glm::factorial(static_cast<T>(4)) | |
- (x * x * x * x * x * x) / glm::factorial(static_cast<T>(6)) | |
+ (x * x * x * x * x * x * x * x) / glm::factorial(static_cast<T>(8)); | |
} | |
template<length_t L, typename T, qualifier Q> | |
GLM_FUNC_QUALIFIER glm::vec<L, T, Q> fastRefCos(glm::vec<L, T, Q> const& x) | |
{ | |
glm::vec<L, T, Q> const Angle0_PI(glm::abs(fmod(x + glm::pi<T>(), glm::two_pi<T>()) - glm::pi<T>())); | |
// return taylorSeriesRefCos(Angle0_PI); | |
glm::vec<L, bool, Q> const FirstQuarterPi(lessThanEqual(Angle0_PI, glm::vec<L, T, Q>(glm::half_pi<T>()))); | |
glm::vec<L, T, Q> const RevertAngle(mix(glm::vec<L, T, Q>(glm::pi<T>()), glm::vec<L, T, Q>(0), FirstQuarterPi)); | |
glm::vec<L, T, Q> const ReturnSign(mix(glm::vec<L, T, Q>(-1), glm::vec<L, T, Q>(1), FirstQuarterPi)); | |
glm::vec<L, T, Q> const SectionAngle(RevertAngle - Angle0_PI); | |
return ReturnSign * taylorSeriesRefCos(SectionAngle); | |
} | |
int perf_fastCosRef(float Begin, float End, std::size_t Samples) | |
{ | |
std::vector<glm::vec4> Results; | |
Results.resize(Samples); | |
float const Steps = (End - Begin) / static_cast<float>(Samples); | |
std::clock_t const TimeStampBegin = std::clock(); | |
for(std::size_t i = 0; i < Samples; ++i) | |
Results[i] = taylorCos::fastRefCos(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); | |
std::clock_t const TimeStampEnd = std::clock(); | |
std::printf("fastCosRef %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); | |
int Error = 0; | |
for(std::size_t i = 0; i < Samples; ++i) | |
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
return Error; | |
} | |
int perf_fastCosOld(float Begin, float End, std::size_t Samples) | |
{ | |
std::vector<glm::vec4> Results; | |
Results.resize(Samples); | |
float const Steps = (End - Begin) / static_cast<float>(Samples); | |
std::clock_t const TimeStampBegin = std::clock(); | |
for(std::size_t i = 0; i < Samples; ++i) | |
Results[i] = glm::fastCos(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); | |
std::clock_t const TimeStampEnd = std::clock(); | |
std::printf("fastCosOld %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); | |
int Error = 0; | |
for(std::size_t i = 0; i < Samples; ++i) | |
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
return Error; | |
} | |
int perf_cos(float Begin, float End, std::size_t Samples) | |
{ | |
std::vector<glm::vec4> Results; | |
Results.resize(Samples); | |
float const Steps = (End - Begin) / static_cast<float>(Samples); | |
std::clock_t const TimeStampBegin = std::clock(); | |
for(std::size_t i = 0; i < Samples; ++i) | |
Results[i] = glm::cos(AngleShift + glm::vec4(Begin + Steps * static_cast<float>(i))); | |
std::clock_t const TimeStampEnd = std::clock(); | |
std::printf("cos %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); | |
int Error = 0; | |
for(std::size_t i = 0; i < Samples; ++i) | |
Error += Results[i].x >= -1.0f && Results[i].x <= 1.0f ? 0 : 1; | |
return Error; | |
} | |
int perf(std::size_t const Samples) | |
{ | |
int Error = 0; | |
float const Begin = -glm::pi<float>(); | |
float const End = glm::pi<float>(); | |
Error += perf_cos(Begin, End, Samples); | |
Error += perf_fastCosOld(Begin, End, Samples); | |
Error += perf_fastCosRef(Begin, End, Samples); | |
//Error += perf_fastCosNew(Begin, End, Samples); | |
Error += perf_fastCosDeterminisctic(Begin, End, Samples); | |
return Error; | |
} | |
int test() | |
{ | |
int Error = 0; | |
//for(float Angle = -4.0f * glm::pi<float>(); Angle < 4.0f * glm::pi<float>(); Angle += 0.1f) | |
//for(float Angle = -720.0f; Angle < 720.0f; Angle += 0.1f) | |
for(float Angle = 0.0f; Angle < 180.0f; Angle += 0.1f) | |
{ | |
float const modAngle = std::fmod(glm::abs(Angle), 360.f); | |
assert(modAngle >= 0.0f && modAngle <= 360.f); | |
float const radAngle = glm::radians(modAngle); | |
float const Cos0 = std::cos(radAngle); | |
float const Cos1 = taylorCos::fastRefCos(glm::fvec1(radAngle)).x; | |
Error += glm::abs(Cos1 - Cos0) < 0.1f ? 0 : 1; | |
//float const Cos2 = taylorCos::fastCosNew(glm::fvec1(radAngle)).x; | |
//Error += glm::abs(Cos2 - Cos0) < 0.1f ? 0 : 1; | |
assert(!Error); | |
} | |
return Error; | |
} | |
}//namespace taylorCos | |
namespace taylor2 | |
{ | |
glm::vec4 const AngleShift(0.0f, glm::pi<float>() * 0.5f, glm::pi<float>() * 1.0f, glm::pi<float>() * 1.5f); | |
float taylorCosA(float x) | |
{ | |
return 1.f | |
- (x * x) * (1.f / 2.f) | |
+ (x * x * x * x) * (1.f / 24.f) | |
- (x * x * x * x * x * x) * (1.f / 720.f) | |
+ (x * x * x * x * x * x * x * x) * (1.f / 40320.f); | |
} | |
float taylorCosB(float x) | |
{ | |
return 1.f | |
- (x * x) * (1.f / 2.f) | |
+ (x * x * x * x) * (1.f / 24.f) | |
- (x * x * x * x * x * x) * (1.f / 720.f) | |
+ (x * x * x * x * x * x * x * x) * (1.f / 40320.f); | |
} | |
float taylorCosC(float x) | |
{ | |
return 1.f | |
- (x * x) * (1.f / 2.f) | |
+ ((x * x) * (x * x)) * (1.f / 24.f) | |
- (((x * x) * (x * x)) * (x * x)) * (1.f / 720.f) | |
+ (((x * x) * (x * x)) * ((x * x) * (x * x))) * (1.f / 40320.f); | |
} | |
int perf_taylorCosA(float Begin, float End, std::size_t Samples) | |
{ | |
std::vector<float> Results; | |
Results.resize(Samples); | |
float const Steps = (End - Begin) / static_cast<float>(Samples); | |
std::clock_t const TimeStampBegin = std::clock(); | |
for(std::size_t i = 0; i < Samples; ++i) | |
Results[i] = taylorCosA(AngleShift.x + Begin + Steps * static_cast<float>(i)); | |
std::clock_t const TimeStampEnd = std::clock(); | |
std::printf("taylorCosA %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); | |
int Error = 0; | |
for(std::size_t i = 0; i < Samples; ++i) | |
Error += Results[i] >= -1.0f && Results[i] <= 1.0f ? 0 : 1; | |
return Error; | |
} | |
int perf_taylorCosB(float Begin, float End, std::size_t Samples) | |
{ | |
std::vector<float> Results; | |
Results.resize(Samples); | |
float const Steps = (End - Begin) / static_cast<float>(Samples); | |
std::clock_t const TimeStampBegin = std::clock(); | |
for(std::size_t i = 0; i < Samples; ++i) | |
Results[i] = taylorCosB(AngleShift.x + Begin + Steps * static_cast<float>(i)); | |
std::clock_t const TimeStampEnd = std::clock(); | |
std::printf("taylorCosB %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); | |
int Error = 0; | |
for(std::size_t i = 0; i < Samples; ++i) | |
Error += Results[i] >= -1.0f && Results[i] <= 1.0f ? 0 : 1; | |
return Error; | |
} | |
int perf_taylorCosC(float Begin, float End, std::size_t Samples) | |
{ | |
std::vector<float> Results; | |
Results.resize(Samples); | |
float const Steps = (End - Begin) / static_cast<float>(Samples); | |
std::clock_t const TimeStampBegin = std::clock(); | |
for(std::size_t i = 0; i < Samples; ++i) | |
Results[i] = taylorCosC(AngleShift.x + Begin + Steps * static_cast<float>(i)); | |
std::clock_t const TimeStampEnd = std::clock(); | |
std::printf("taylorCosC %d clocks\n", static_cast<int>(TimeStampEnd - TimeStampBegin)); | |
int Error = 0; | |
for(std::size_t i = 0; i < Samples; ++i) | |
Error += Results[i] >= -1.0f && Results[i] <= 1.0f ? 0 : 1; | |
return Error; | |
} | |
int perf(std::size_t Samples) | |
{ | |
int Error = 0; | |
float const Begin = -glm::pi<float>(); | |
float const End = glm::pi<float>(); | |
Error += perf_taylorCosA(Begin, End, Samples); | |
Error += perf_taylorCosB(Begin, End, Samples); | |
Error += perf_taylorCosC(Begin, End, Samples); | |
return Error; | |
} | |
}//namespace taylor2 | |
int main() | |
{ | |
int Error(0); | |
Error += ::taylor2::perf(1000); | |
Error += ::taylorCos::test(); | |
Error += ::taylorCos::perf(1000); | |
::fastCos::perf(false); | |
::fastSin::perf(false); | |
::fastTan::perf(false); | |
::fastAcos::perf(false); | |
::fastAsin::perf(false); | |
::fastAtan::perf(false); | |
return Error; | |
} | |