Spaces:
Runtime error
Runtime error
import torch | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.checkpoint import checkpoint as pt_checkpoint # gradient checkpointing from pytorch | |
from functools import partial | |
from typing import List, Optional, Union | |
import deepspeed | |
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint as ds_checkpoint # gradient checkpointing from deepspeed | |
from einops import rearrange | |
from dragnuwa.svd.modules.video_attention import SpatialVideoTransformer | |
from dragnuwa.svd.modules.attention import SpatialTransformer | |
from dragnuwa.svd.util import default | |
from dragnuwa.svd.modules.diffusionmodules.util import (AlphaBlender, avg_pool_nd, conv_nd, linear, | |
normalization, | |
timestep_embedding, zero_module) | |
import logging | |
import math | |
from abc import abstractmethod | |
from typing import Iterable, List, Optional, Tuple, Union | |
logpy = logging.getLogger(__name__) | |
GRADIENT_CHECKPOINTING = 'ds' # 'ds' or 'pt' | |
def is_deepspeed_initialized(): | |
if deepspeed.comm.comm.cdb is not None and deepspeed.comm.comm.cdb.is_initialized(): | |
return True | |
else: | |
return False | |
def checkpoint(func, *args, **kwargs): | |
if GRADIENT_CHECKPOINTING == 'ds': | |
if is_deepspeed_initialized(): | |
return ds_checkpoint(func, *args, **kwargs) | |
else: | |
return pt_checkpoint(func, *args, **kwargs) | |
elif GRADIENT_CHECKPOINTING == 'pt': | |
return pt_checkpoint(func, *args, **kwargs) | |
else: | |
raise ValueError(f'Invalid gradient checkpointing method: {GRADIENT_CHECKPOINTING}') | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x: th.Tensor, emb: th.Tensor): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward( | |
self, | |
x: th.Tensor, | |
emb: th.Tensor, | |
context: Optional[th.Tensor] = None, | |
image_only_indicator: Optional[th.Tensor] = None, | |
time_context: Optional[int] = None, | |
num_video_frames: Optional[int] = None, | |
flow: Optional[th.Tensor] = None, | |
): | |
for layer in self: | |
module = layer | |
if isinstance(module, TimestepBlock) and not isinstance(module, VideoResBlock) and not isinstance(module, VideoResBlock_Embed): | |
x = layer(x, emb) | |
elif isinstance(module, VideoResBlock): | |
x = layer(x, emb, num_video_frames, image_only_indicator) | |
elif isinstance(module, VideoResBlock_Embed): | |
x = layer(x, emb, num_video_frames, image_only_indicator, flow) | |
elif isinstance(module, SpatialVideoTransformer): | |
x = layer( | |
x, | |
context, | |
time_context, | |
num_video_frames, | |
image_only_indicator, | |
) | |
elif isinstance(module, SpatialTransformer): | |
x = layer(x, context) | |
elif isinstance(module, nn.Conv2d): | |
x = layer(x) | |
elif isinstance(module, nn.Conv1d): | |
h, w = x.shape[-2:] | |
x = rearrange(x, "(b f) c h w -> (b h w) c f", f=num_video_frames) | |
x = layer(x) | |
x = rearrange(x, "(b h w) c f -> (b f) c h w", h=h, w=w) | |
else: | |
x = layer(x) | |
return x | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
use_conv: bool, | |
dims: int = 2, | |
out_channels: Optional[int] = None, | |
padding: int = 1, | |
third_up: bool = False, | |
kernel_size: int = 3, | |
scale_factor: int = 2, | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
self.third_up = third_up | |
self.scale_factor = scale_factor | |
if use_conv: | |
self.conv = conv_nd( | |
dims, self.channels, self.out_channels, kernel_size, padding=padding | |
) | |
def forward(self, x: th.Tensor) -> th.Tensor: | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
t_factor = 1 if not self.third_up else self.scale_factor | |
x = F.interpolate( | |
x, | |
( | |
t_factor * x.shape[2], | |
x.shape[3] * self.scale_factor, | |
x.shape[4] * self.scale_factor, | |
), | |
mode="nearest", | |
) | |
else: | |
x = F.interpolate(x, scale_factor=self.scale_factor, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
use_conv: bool, | |
dims: int = 2, | |
out_channels: Optional[int] = None, | |
padding: int = 1, | |
third_down: bool = False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else ((1, 2, 2) if not third_down else (2, 2, 2)) | |
if use_conv: | |
logpy.info(f"Building a Downsample layer with {dims} dims.") | |
logpy.info( | |
f" --> settings are: \n in-chn: {self.channels}, out-chn: {self.out_channels}, " | |
f"kernel-size: 3, stride: {stride}, padding: {padding}" | |
) | |
if dims == 3: | |
logpy.info(f" --> Downsampling third axis (time): {third_down}") | |
self.op = conv_nd( | |
dims, | |
self.channels, | |
self.out_channels, | |
3, | |
stride=stride, | |
padding=padding, | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x: th.Tensor) -> th.Tensor: | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
emb_channels: int, | |
dropout: float, | |
out_channels: Optional[int] = None, | |
use_conv: bool = False, | |
use_scale_shift_norm: bool = False, | |
dims: int = 2, | |
use_checkpoint: bool = False, | |
up: bool = False, | |
down: bool = False, | |
kernel_size: int = 3, | |
exchange_temb_dims: bool = False, | |
skip_t_emb: bool = False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.exchange_temb_dims = exchange_temb_dims | |
if isinstance(kernel_size, Iterable): | |
padding = [k // 2 for k in kernel_size] | |
else: | |
padding = kernel_size // 2 | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.skip_t_emb = skip_t_emb | |
self.emb_out_channels = ( | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels | |
) | |
if self.skip_t_emb: | |
logpy.info(f"Skipping timestep embedding in {self.__class__.__name__}") | |
assert not self.use_scale_shift_norm | |
self.emb_layers = None | |
self.exchange_temb_dims = False | |
else: | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear( | |
emb_channels, | |
self.emb_out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd( | |
dims, | |
self.out_channels, | |
self.out_channels, | |
kernel_size, | |
padding=padding, | |
) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, kernel_size, padding=padding | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x: th.Tensor, emb: th.Tensor) -> th.Tensor: | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
if self.use_checkpoint: | |
return checkpoint(self._forward, x, emb) | |
else: | |
return self._forward(x, emb) | |
def _forward(self, x: th.Tensor, emb: th.Tensor) -> th.Tensor: | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
if self.skip_t_emb: | |
emb_out = th.zeros_like(h) | |
else: | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = th.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
if self.exchange_temb_dims: | |
emb_out = rearrange(emb_out, "b t c ... -> b c t ...") | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class AttentionBlock(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other. | |
Originally ported from here, but adapted to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
num_heads: int = 1, | |
num_head_channels: int = -1, | |
use_checkpoint: bool = False, | |
use_new_attention_order: bool = False, | |
): | |
super().__init__() | |
self.channels = channels | |
if num_head_channels == -1: | |
self.num_heads = num_heads | |
else: | |
assert ( | |
channels % num_head_channels == 0 | |
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" | |
self.num_heads = channels // num_head_channels | |
self.use_checkpoint = use_checkpoint | |
self.norm = normalization(channels) | |
self.qkv = conv_nd(1, channels, channels * 3, 1) | |
if use_new_attention_order: | |
# split qkv before split heads | |
self.attention = QKVAttention(self.num_heads) | |
else: | |
# split heads before split qkv | |
self.attention = QKVAttentionLegacy(self.num_heads) | |
self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) | |
def forward(self, x: th.Tensor, **kwargs) -> th.Tensor: | |
return checkpoint(self._forward, x) | |
def _forward(self, x: th.Tensor) -> th.Tensor: | |
b, c, *spatial = x.shape | |
x = x.reshape(b, c, -1) | |
qkv = self.qkv(self.norm(x)) | |
h = self.attention(qkv) | |
h = self.proj_out(h) | |
return (x + h).reshape(b, c, *spatial) | |
class QKVAttentionLegacy(nn.Module): | |
""" | |
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping | |
""" | |
def __init__(self, n_heads: int): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv: th.Tensor) -> th.Tensor: | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = th.einsum( | |
"bct,bcs->bts", q * scale, k * scale | |
) # More stable with f16 than dividing afterwards | |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
a = th.einsum("bts,bcs->bct", weight, v) | |
return a.reshape(bs, -1, length) | |
class QKVAttention(nn.Module): | |
""" | |
A module which performs QKV attention and splits in a different order. | |
""" | |
def __init__(self, n_heads: int): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv: th.Tensor) -> th.Tensor: | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.chunk(3, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = th.einsum( | |
"bct,bcs->bts", | |
(q * scale).view(bs * self.n_heads, ch, length), | |
(k * scale).view(bs * self.n_heads, ch, length), | |
) # More stable with f16 than dividing afterwards | |
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) | |
return a.reshape(bs, -1, length) | |
class Timestep(nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.dim = dim | |
def forward(self, t: th.Tensor) -> th.Tensor: | |
return timestep_embedding(t, self.dim) | |
class FloatGroupNorm(nn.GroupNorm): | |
def forward(self, x): | |
return super().forward(x.to(self.bias.dtype)).type(x.dtype) | |
class VideoResBlock(ResBlock): | |
def __init__( | |
self, | |
channels: int, | |
emb_channels: int, | |
dropout: float, | |
video_kernel_size: Union[int, List[int]] = 3, | |
merge_strategy: str = "fixed", | |
merge_factor: float = 0.5, | |
out_channels: Optional[int] = None, | |
use_conv: bool = False, | |
use_scale_shift_norm: bool = False, | |
dims: int = 2, | |
use_checkpoint: bool = False, | |
up: bool = False, | |
down: bool = False, | |
): | |
super().__init__( | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=out_channels, | |
use_conv=use_conv, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
up=up, | |
down=down, | |
) | |
self.time_stack = ResBlock( | |
default(out_channels, channels), | |
emb_channels, | |
dropout=dropout, | |
dims=3, | |
out_channels=default(out_channels, channels), | |
use_scale_shift_norm=False, | |
use_conv=False, | |
up=False, | |
down=False, | |
kernel_size=video_kernel_size, | |
use_checkpoint=use_checkpoint, | |
exchange_temb_dims=True, | |
) | |
self.time_mixer = AlphaBlender( | |
alpha=merge_factor, | |
merge_strategy=merge_strategy, | |
rearrange_pattern="b t -> b 1 t 1 1", | |
) | |
def forward( | |
self, | |
x: th.Tensor, | |
emb: th.Tensor, | |
num_video_frames: int, | |
image_only_indicator: Optional[th.Tensor] = None, | |
) -> th.Tensor: | |
x = super().forward(x, emb) | |
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) | |
x = self.time_stack( | |
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) | |
) | |
x = self.time_mixer( | |
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator | |
) | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
return x | |
class ResBlockEmbed(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
emb_channels: int, | |
dropout: float, | |
out_channels: Optional[int] = None, | |
use_conv: bool = False, | |
use_scale_shift_norm: bool = False, | |
dims: int = 2, | |
use_checkpoint: bool = False, | |
up: bool = False, | |
down: bool = False, | |
kernel_size: int = 3, | |
exchange_temb_dims: bool = False, | |
skip_t_emb: bool = False, | |
is_same_channel: bool = True, | |
flow_dim_scale: int = 8, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.exchange_temb_dims = exchange_temb_dims | |
if isinstance(kernel_size, Iterable): | |
padding = [k // 2 for k in kernel_size] | |
else: | |
padding = kernel_size // 2 | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
#### add layers to deal with flow | |
self.flow_cond_norm = FloatGroupNorm(32, self.out_channels) | |
if is_same_channel: | |
flow_in_channel = self.out_channels // flow_dim_scale | |
else: | |
flow_in_channel = self.out_channels // flow_dim_scale // 2 | |
self.flow_gamma_spatial = nn.Conv2d(flow_in_channel, self.out_channels // 4, 3, padding=1) | |
self.flow_gamma_temporal = zero_module(nn.Conv1d(self.out_channels // 4, self.out_channels, kernel_size=3, | |
stride=1, | |
padding=1, | |
padding_mode='replicate')) | |
self.flow_beta_spatial = nn.Conv2d(flow_in_channel, self.out_channels // 4, 3, padding=1) | |
self.flow_beta_temporal = zero_module(nn.Conv1d(self.out_channels // 4, self.out_channels, kernel_size=3, | |
stride=1, | |
padding=1, | |
padding_mode='replicate')) | |
self.skip_t_emb = skip_t_emb | |
self.emb_out_channels = ( | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels | |
) | |
if self.skip_t_emb: | |
logpy.info(f"Skipping timestep embedding in {self.__class__.__name__}") | |
assert not self.use_scale_shift_norm | |
self.emb_layers = None | |
self.exchange_temb_dims = False | |
else: | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear( | |
emb_channels, | |
self.emb_out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd( | |
dims, | |
self.out_channels, | |
self.out_channels, | |
kernel_size, | |
padding=padding, | |
) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, kernel_size, padding=padding | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x: th.Tensor, emb: th.Tensor, num_video_frames: int, flow: th.Tensor) -> th.Tensor: | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
num_video_frames = torch.tensor(num_video_frames).to(x.device).to(x.dtype) | |
if self.use_checkpoint: | |
return checkpoint(self._forward, x, emb, num_video_frames, flow) | |
else: | |
return self._forward(x, emb, num_video_frames, flow) | |
def _forward(self, x: th.Tensor, emb: th.Tensor, num_video_frames: th.Tensor, flow: th.Tensor) -> th.Tensor: | |
num_video_frames = int(num_video_frames.detach().cpu().numpy()) | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
assert flow is not None, 'You must provide the flow to the ResBlockEmbed' | |
gamma_flow = self.flow_gamma_spatial(flow) | |
beta_flow = self.flow_beta_spatial(flow) | |
_, _, hh, wh = beta_flow.shape | |
gamma_flow = rearrange(gamma_flow, "(b f) c h w -> (b h w) c f", f=num_video_frames) | |
beta_flow = rearrange(beta_flow, "(b f) c h w -> (b h w) c f", f=num_video_frames) | |
gamma_flow = self.flow_gamma_temporal(gamma_flow) | |
beta_flow = self.flow_beta_temporal(beta_flow) | |
gamma_flow = rearrange(gamma_flow, "(b h w) c f -> (b f) c h w", h=hh, w=wh) | |
beta_flow = rearrange(beta_flow, "(b h w) c f -> (b f) c h w", h=hh, w=wh) | |
h = h + self.flow_cond_norm(h) * gamma_flow + beta_flow | |
if self.skip_t_emb: | |
emb_out = th.zeros_like(h) | |
else: | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = th.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
if self.exchange_temb_dims: | |
emb_out = rearrange(emb_out, "b t c ... -> b c t ...") | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class VideoResBlock_Embed(ResBlockEmbed): | |
def __init__( | |
self, | |
channels: int, | |
emb_channels: int, | |
dropout: float, | |
video_kernel_size: Union[int, List[int]] = 3, | |
merge_strategy: str = "fixed", | |
merge_factor: float = 0.5, | |
out_channels: Optional[int] = None, | |
use_conv: bool = False, | |
use_scale_shift_norm: bool = False, | |
dims: int = 2, | |
use_checkpoint: bool = False, | |
up: bool = False, | |
down: bool = False, | |
is_same_channel: bool = True, | |
flow_dim_scale: int = 8, | |
): | |
super().__init__( | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=out_channels, | |
use_conv=use_conv, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
up=up, | |
down=down, | |
is_same_channel=is_same_channel, | |
flow_dim_scale=flow_dim_scale, | |
) | |
self.time_stack = ResBlock( | |
default(out_channels, channels), | |
emb_channels, | |
dropout=dropout, | |
dims=3, | |
out_channels=default(out_channels, channels), | |
use_scale_shift_norm=False, | |
use_conv=False, | |
up=False, | |
down=False, | |
kernel_size=video_kernel_size, | |
use_checkpoint=use_checkpoint, | |
exchange_temb_dims=True, | |
) | |
self.time_mixer = AlphaBlender( | |
alpha=merge_factor, | |
merge_strategy=merge_strategy, | |
rearrange_pattern="b t -> b 1 t 1 1", | |
) | |
def forward( | |
self, | |
x: th.Tensor, | |
emb: th.Tensor, | |
num_video_frames: int, | |
image_only_indicator: Optional[th.Tensor] = None, | |
flow: th.Tensor = None, | |
) -> th.Tensor: | |
x = super().forward(x, emb, num_video_frames, flow) | |
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) | |
x = self.time_stack( | |
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) | |
) | |
x = self.time_mixer( | |
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator | |
) | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
return x | |
class VideoUNet_flow(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
model_channels: int, | |
out_channels: int, | |
num_res_blocks: int, | |
attention_resolutions: int, | |
dropout: float = 0.0, | |
channel_mult: List[int] = (1, 2, 4, 8), | |
conv_resample: bool = True, | |
dims: int = 2, | |
num_classes: Optional[int] = None, | |
use_checkpoint: bool = False, | |
num_heads: int = -1, | |
num_head_channels: int = -1, | |
num_heads_upsample: int = -1, | |
use_scale_shift_norm: bool = False, | |
resblock_updown: bool = False, | |
transformer_depth: Union[List[int], int] = 1, | |
transformer_depth_middle: Optional[int] = None, | |
context_dim: Optional[int] = None, | |
time_downup: bool = False, | |
time_context_dim: Optional[int] = None, | |
extra_ff_mix_layer: bool = False, | |
use_spatial_context: bool = False, | |
merge_strategy: str = "fixed", | |
merge_factor: float = 0.5, | |
spatial_transformer_attn_type: str = "softmax", | |
video_kernel_size: Union[int, List[int]] = 3, | |
use_linear_in_transformer: bool = False, | |
adm_in_channels: Optional[int] = None, | |
disable_temporal_crossattention: bool = False, | |
max_ddpm_temb_period: int = 10000, | |
flow_dim_scale: int = 8, | |
): | |
super().__init__() | |
assert context_dim is not None | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1 | |
if num_head_channels == -1: | |
assert num_heads != -1 | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
if isinstance(transformer_depth, int): | |
transformer_depth = len(channel_mult) * [transformer_depth] | |
transformer_depth_middle = default( | |
transformer_depth_middle, transformer_depth[-1] | |
) | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
if self.num_classes is not None: | |
if isinstance(self.num_classes, int): | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
elif self.num_classes == "continuous": | |
print("setting up linear c_adm embedding layer") | |
self.label_emb = nn.Linear(1, time_embed_dim) | |
elif self.num_classes == "timestep": | |
self.label_emb = nn.Sequential( | |
Timestep(model_channels), | |
nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
), | |
) | |
elif self.num_classes == "sequential": | |
assert adm_in_channels is not None | |
self.label_emb = nn.Sequential( | |
nn.Sequential( | |
linear(adm_in_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
) | |
else: | |
raise ValueError() | |
### process the flow / drag | |
self.flow_dim_scale = flow_dim_scale | |
self.flow_blocks = nn.ModuleList([]) | |
flow_in_block = TimestepEmbedSequential( | |
nn.Conv2d(2, self.model_channels // flow_dim_scale // 4, 3, stride=2, padding=1), # flow in channel 2 | |
nn.Conv1d(self.model_channels // flow_dim_scale // 4, self.model_channels // flow_dim_scale // 4, kernel_size=3, stride=1, | |
padding=1, padding_mode='replicate'), | |
FloatGroupNorm(8, self.model_channels // flow_dim_scale // 4), | |
nn.SiLU(), | |
nn.Conv2d(self.model_channels // flow_dim_scale // 4, self.model_channels // flow_dim_scale // 2, 3, stride=2, padding=1), | |
nn.Conv1d(self.model_channels // flow_dim_scale // 2, self.model_channels // flow_dim_scale // 2, kernel_size=3, stride=1, | |
padding=1, padding_mode='replicate'), | |
FloatGroupNorm(8, self.model_channels // flow_dim_scale // 2), | |
nn.SiLU(), | |
nn.Conv2d(self.model_channels // flow_dim_scale // 2, self.model_channels // flow_dim_scale, 3, stride=2, padding=1), | |
nn.Conv1d(self.model_channels // flow_dim_scale, self.model_channels // flow_dim_scale, kernel_size=3, stride=1, | |
padding=1, padding_mode='replicate'), | |
) | |
self.flow_blocks.append(flow_in_block) | |
flow_in_channel = self.model_channels // flow_dim_scale | |
for i_f, ch_f in enumerate(channel_mult[1:]): | |
layers_f = nn.ModuleList([ | |
FloatGroupNorm(8, flow_in_channel), | |
nn.SiLU(), | |
nn.Conv2d(flow_in_channel, ch_f * self.model_channels // flow_dim_scale, 3, padding=1), | |
nn.Conv1d(ch_f * self.model_channels // flow_dim_scale, ch_f * self.model_channels // flow_dim_scale, kernel_size=3, stride=1, padding=1, padding_mode='replicate'), | |
]) | |
flow_in_channel = ch_f * self.model_channels // flow_dim_scale | |
if i_f != len(channel_mult) - 1: | |
layers_f.append( | |
Downsample( | |
flow_in_channel, True, dims=2, out_channels=flow_in_channel | |
) | |
) | |
self.flow_blocks.append(TimestepEmbedSequential(*layers_f)) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
def get_attention_layer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=1, | |
context_dim=None, | |
use_checkpoint=False, | |
disabled_sa=False, | |
): | |
return SpatialVideoTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=depth, | |
context_dim=context_dim, | |
time_context_dim=time_context_dim, | |
dropout=dropout, | |
ff_in=extra_ff_mix_layer, | |
use_spatial_context=use_spatial_context, | |
merge_strategy=merge_strategy, | |
merge_factor=merge_factor, | |
checkpoint=use_checkpoint, | |
use_linear=use_linear_in_transformer, | |
attn_mode=spatial_transformer_attn_type, | |
disable_self_attn=disabled_sa, | |
disable_temporal_crossattention=disable_temporal_crossattention, | |
max_time_embed_period=max_ddpm_temb_period, | |
) | |
def get_resblock( | |
merge_factor, | |
merge_strategy, | |
video_kernel_size, | |
ch, | |
time_embed_dim, | |
dropout, | |
out_ch, | |
dims, | |
use_checkpoint, | |
use_scale_shift_norm, | |
down=False, | |
up=False, | |
): | |
return VideoResBlock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=down, | |
up=up, | |
) | |
def get_embed_resblock( | |
merge_factor, | |
merge_strategy, | |
video_kernel_size, | |
ch, | |
time_embed_dim, | |
dropout, | |
out_ch, | |
dims, | |
use_checkpoint, | |
use_scale_shift_norm, | |
down=False, | |
up=False, | |
is_same_channel=True, | |
flow_dim_scale=8, | |
): | |
return VideoResBlock_Embed( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
channels=ch, | |
emb_channels=time_embed_dim, | |
dropout=dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=down, | |
up=up, | |
is_same_channel=is_same_channel, | |
flow_dim_scale=flow_dim_scale, | |
) | |
for level, mult in enumerate(channel_mult): | |
for i in range(num_res_blocks): | |
if i == 0: | |
layers = [ | |
get_embed_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_ch=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
is_same_channel=True, | |
flow_dim_scale=flow_dim_scale, | |
) | |
] | |
else: | |
layers = [ | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_ch=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
layers.append( | |
get_attention_layer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth[level], | |
context_dim=context_dim, | |
use_checkpoint=use_checkpoint, | |
disabled_sa=False, | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
ds *= 2 | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
Downsample( | |
ch, | |
conv_resample, | |
dims=dims, | |
out_channels=out_ch, | |
third_down=time_downup, | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
time_embed_dim=time_embed_dim, | |
out_ch=None, | |
dropout=dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
get_attention_layer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth_middle, | |
context_dim=context_dim, | |
use_checkpoint=use_checkpoint, | |
), | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch, | |
out_ch=None, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self._feature_size += ch | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(num_res_blocks + 1): | |
ich = input_block_chans.pop() | |
if i == 0: | |
layers = [ | |
get_embed_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch + ich, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_ch=model_channels * mult, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
is_same_channel=True, | |
flow_dim_scale=flow_dim_scale, | |
) | |
] | |
else: | |
layers = [ | |
get_resblock( | |
merge_factor=merge_factor, | |
merge_strategy=merge_strategy, | |
video_kernel_size=video_kernel_size, | |
ch=ch + ich, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
out_ch=model_channels * mult, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = model_channels * mult | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
layers.append( | |
get_attention_layer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth[level], | |
context_dim=context_dim, | |
use_checkpoint=use_checkpoint, | |
disabled_sa=False, | |
) | |
) | |
if level and i == num_res_blocks: | |
out_ch = ch | |
ds //= 2 | |
layers.append( | |
Upsample( | |
ch, | |
conv_resample, | |
dims=dims, | |
out_channels=out_ch, | |
third_up=time_downup, | |
) | |
) | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
self.out = nn.Sequential( | |
normalization(ch), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
) | |
def forward( | |
self, | |
x: th.Tensor, | |
timesteps: th.Tensor, | |
context: Optional[th.Tensor] = None, | |
y: Optional[th.Tensor] = None, | |
time_context: Optional[th.Tensor] = None, | |
num_video_frames: Optional[int] = None, | |
image_only_indicator: Optional[th.Tensor] = None, | |
flow: Optional[th.Tensor] = None, # input flow or drag: b l c h w | |
): | |
assert (y is not None) == ( | |
self.num_classes is not None | |
), "must specify y if and only if the model is class-conditional -> no, relax this TODO" | |
hs = [] | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
batch_size = flow.shape[0] | |
# process the flow | |
hs_z_flow = [] | |
hs_z_flow_clone = [] | |
flow = rearrange(flow, "b l c h w -> (b l) c h w") | |
for module in self.flow_blocks: | |
flow = module(flow, emb=None, num_video_frames=num_video_frames) | |
hs_z_flow.extend([flow]) | |
hs_z_flow_clone.extend([flow.clone()]) | |
h = x | |
for module in self.input_blocks: | |
if isinstance(module[0], VideoResBlock_Embed): | |
h = module( | |
h, | |
emb, | |
context=context, | |
image_only_indicator=image_only_indicator, | |
time_context=time_context, | |
num_video_frames=num_video_frames, | |
flow=hs_z_flow.pop(0) | |
) | |
else: | |
h = module( | |
h, | |
emb, | |
context=context, | |
image_only_indicator=image_only_indicator, | |
time_context=time_context, | |
num_video_frames=num_video_frames, | |
) | |
hs.append(h) | |
h = self.middle_block( | |
h, | |
emb, | |
context=context, | |
image_only_indicator=image_only_indicator, | |
time_context=time_context, | |
num_video_frames=num_video_frames, | |
) | |
for module in self.output_blocks: | |
h = th.cat([h, hs.pop()], dim=1) | |
if isinstance(module[0], VideoResBlock_Embed): | |
h = module( | |
h, | |
emb, | |
context=context, | |
image_only_indicator=image_only_indicator, | |
time_context=time_context, | |
num_video_frames=num_video_frames, | |
flow=hs_z_flow_clone.pop(), | |
) | |
else: | |
h = module( | |
h, | |
emb, | |
context=context, | |
image_only_indicator=image_only_indicator, | |
time_context=time_context, | |
num_video_frames=num_video_frames, | |
) | |
h = h.type(x.dtype) | |
return self.out(h) |