Spaces:
Runtime error
Runtime error
File size: 19,574 Bytes
ab85cf9 0ab242d ab85cf9 0ab242d ab85cf9 bba5f7f 38e5e49 ab85cf9 bba5f7f bd52c47 ab85cf9 0ab242d ab85cf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import gradio as gr
import numpy as np
import cv2
from PIL import Image, ImageFilter
import uuid
from scipy.interpolate import interp1d, PchipInterpolator
import torchvision
import torch
from utils import *
output_dir = "outputs"
ensure_dirname(output_dir)
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
def interpolate_trajectory(points, n_points):
x = [point[0] for point in points]
y = [point[1] for point in points]
t = np.linspace(0, 1, len(points))
# fx = interp1d(t, x, kind='cubic')
# fy = interp1d(t, y, kind='cubic')
fx = PchipInterpolator(t, x)
fy = PchipInterpolator(t, y)
new_t = np.linspace(0, 1, n_points)
new_x = fx(new_t)
new_y = fy(new_t)
new_points = list(zip(new_x, new_y))
return new_points
def visualize_drag_v2(background_image_path, splited_tracks, width, height):
trajectory_maps = []
background_image = Image.open(background_image_path).convert('RGBA')
background_image = background_image.resize((width, height))
w, h = background_image.size
transparent_background = np.array(background_image)
transparent_background[:, :, -1] = 128
transparent_background = Image.fromarray(transparent_background)
# Create a transparent layer with the same size as the background image
transparent_layer = np.zeros((h, w, 4))
for splited_track in splited_tracks:
if len(splited_track) > 1:
splited_track = interpolate_trajectory(splited_track, 16)
splited_track = splited_track[:16]
for i in range(len(splited_track)-1):
start_point = (int(splited_track[i][0]), int(splited_track[i][1]))
end_point = (int(splited_track[i+1][0]), int(splited_track[i+1][1]))
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(splited_track)-2:
cv2.arrowedLine(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2)
else:
cv2.circle(transparent_layer, (int(splited_track[0][0]), int(splited_track[0][1])), 5, (255, 0, 0, 192), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
trajectory_maps.append(trajectory_map)
return trajectory_maps, transparent_layer
class Drag:
def __init__(self, device, model_path, cfg_path, height, width, model_length):
self.device = device
cf = import_filename(cfg_path)
Net, args = cf.Net, cf.args
drag_nuwa_net = Net(args)
state_dict = file2data(model_path, map_location='cpu')
adaptively_load_state_dict(drag_nuwa_net, state_dict)
drag_nuwa_net.eval()
drag_nuwa_net.to(device)
# drag_nuwa_net.half()
self.drag_nuwa_net = drag_nuwa_net
self.height = height
self.width = width
_, model_step, _ = split_filename(model_path)
self.ouput_prefix = f'{model_step}_{width}X{height}'
self.model_length = model_length
@torch.no_grad()
def forward_sample(self, input_drag, input_first_frame, motion_bucket_id, outputs=dict()):
device = self.device
b, l, h, w, c = input_drag.size()
drag = self.drag_nuwa_net.apply_gaussian_filter_on_drag(input_drag)
drag = torch.cat([torch.zeros_like(drag[:, 0]).unsqueeze(1), drag], dim=1) # pad the first frame with zero flow
drag = rearrange(drag, 'b l h w c -> b l c h w')
input_conditioner = dict()
input_conditioner['cond_frames_without_noise'] = input_first_frame
input_conditioner['cond_frames'] = (input_first_frame + 0.02 * torch.randn_like(input_first_frame))
input_conditioner['motion_bucket_id'] = torch.tensor([motion_bucket_id]).to(drag.device).repeat(b * (l+1))
input_conditioner['fps_id'] = torch.tensor([self.drag_nuwa_net.args.fps]).to(drag.device).repeat(b * (l+1))
input_conditioner['cond_aug'] = torch.tensor([0.02]).to(drag.device).repeat(b * (l+1))
input_conditioner_uc = {}
for key in input_conditioner.keys():
if key not in input_conditioner_uc and isinstance(input_conditioner[key], torch.Tensor):
input_conditioner_uc[key] = input_conditioner[key].clone()
c, uc = self.drag_nuwa_net.conditioner.get_unconditional_conditioning(
input_conditioner,
batch_uc=input_conditioner_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=self.drag_nuwa_net.num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...")
c[k] = repeat(c[k], "b ... -> b t ...", t=self.drag_nuwa_net.num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...")
H, W = input_conditioner['cond_frames_without_noise'].shape[2:]
shape = (self.drag_nuwa_net.num_frames, 4, H // 8, W // 8)
randn = torch.randn(shape).to(self.device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, self.drag_nuwa_net.num_frames
).to(self.device)
additional_model_inputs["num_video_frames"] = self.drag_nuwa_net.num_frames
additional_model_inputs["flow"] = drag.repeat(2, 1, 1, 1, 1) # c and uc
def denoiser(input, sigma, c):
return self.drag_nuwa_net.denoiser(self.drag_nuwa_net.model, input, sigma, c, **additional_model_inputs)
samples_z = self.drag_nuwa_net.sampler(denoiser, randn, cond=c, uc=uc)
samples = self.drag_nuwa_net.decode_first_stage(samples_z)
outputs['logits_imgs'] = rearrange(samples, '(b l) c h w -> b l c h w', b=b)
return outputs
def run(self, first_frame_path, tracking_points, inference_batch_size, motion_bucket_id):
original_width, original_height=576, 320
input_all_points = tracking_points.constructor_args['value']
resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
input_drag = torch.zeros(self.model_length - 1, self.height, self.width, 2)
for splited_track in resized_all_points:
if len(splited_track) == 1: # stationary point
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
splited_track = tuple([splited_track[0], displacement_point])
# interpolate the track
splited_track = interpolate_trajectory(splited_track, self.model_length)
splited_track = splited_track[:self.model_length]
if len(splited_track) < self.model_length:
splited_track = splited_track + [splited_track[-1]] * (self.model_length -len(splited_track))
for i in range(self.model_length - 1):
start_point = splited_track[i]
end_point = splited_track[i+1]
input_drag[i][int(start_point[1])][int(start_point[0])][0] = end_point[0] - start_point[0]
input_drag[i][int(start_point[1])][int(start_point[0])][1] = end_point[1] - start_point[1]
dir, base, ext = split_filename(first_frame_path)
id = base.split('_')[-1]
image_pil = image2pil(first_frame_path)
image_pil = image_pil.resize((self.width, self.height), Image.BILINEAR).convert('RGB')
visualized_drag, _ = visualize_drag_v2(first_frame_path, resized_all_points, self.width, self.height)
first_frames_transform = transforms.Compose([
lambda x: Image.fromarray(x),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
outputs = None
ouput_video_list = []
num_inference = 1
for i in tqdm(range(num_inference)):
if not outputs:
first_frames = image2arr(first_frame_path)
first_frames = repeat(first_frames_transform(first_frames), 'c h w -> b c h w', b=inference_batch_size).to(self.device)
else:
first_frames = outputs['logits_imgs'][:, -1]
outputs = self.forward_sample(
repeat(input_drag[i*(self.model_length - 1):(i+1)*(self.model_length - 1)], 'l h w c -> b l h w c', b=inference_batch_size).to(self.device),
first_frames,
motion_bucket_id)
ouput_video_list.append(outputs['logits_imgs'])
for i in range(inference_batch_size):
ouput_tensor = [ouput_video_list[0][i]]
for j in range(num_inference - 1):
ouput_tensor.append(ouput_video_list[j+1][i][1:])
ouput_tensor = torch.cat(ouput_tensor, dim=0)
outputs_path = os.path.join(output_dir, f'output_{i}_{id}.gif')
data2file([transforms.ToPILImage('RGB')(utils.make_grid(e.to(torch.float32).cpu(), normalize=True, range=(-1, 1))) for e in ouput_tensor], outputs_path,
printable=False, duration=1 / 6, override=True)
return visualized_drag[0], outputs_path
with gr.Blocks() as demo:
gr.Markdown("""<h1 align="center">DragNUWA 1.5</h1><br>""")
gr.Markdown("""Demo for <a href='https://arxiv.org/abs/2308.08089'><b>DragNUWA: Fine-grained Control in Video Generation by Integrating Text, Image, and Trajectory</b></a>.<br>
github: <a href='https://github.com/ProjectNUWA/DragNUWA'><b>https://github.com/ProjectNUWA/DragNUWA</b></a>
🔥DragNUWA enables users to manipulate backgrounds or objects within images directly, and the model seamlessly translates these actions into **camera movements** or **object motions**, generating the corresponding video.<br>
🔥DragNUWA 1.5 uses Stable Video Diffusion to animate an image according to specific path.<br>""")
gr.Image(label="DragNUWA", value="assets/DragNUWA1.5/Figure1.gif")
gr.Markdown("""## Usage: <br>
1. Upload an image via the "Upload Image" button.<br>
2. Draw some drags.<br>
2.1. Click "Add Drag" when you want to add a control path.<br>
2.2. You can click several points which forms a path.<br>
2.3. Click "Delete last drag" to delete the whole lastest path.<br>
2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
3. Animate the image according the path with a click on "Run" button. <br>""")
DragNUWA_net = Drag(device, 'drag_nuwa.pth', 'DragNUWA_net.py', 320, 576, 14)
first_frame_path = gr.State()
tracking_points = gr.State([])
def reset_states(first_frame_path, tracking_points):
first_frame_path = gr.State()
tracking_points = gr.State([])
return first_frame_path, tracking_points
def preprocess_image(image):
image_pil = image2pil(image.name)
raw_w, raw_h = image_pil.size
resize_ratio = max(576/raw_w, 320/raw_h)
image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
image_pil = transforms.CenterCrop((320, 576))(image_pil.convert('RGB'))
first_frame_path = os.path.join(output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
image_pil.save(first_frame_path)
return first_frame_path, first_frame_path, gr.State([])
def add_drag(tracking_points):
tracking_points.constructor_args['value'].append([])
return tracking_points
def delete_last_drag(tracking_points, first_frame_path):
tracking_points.constructor_args['value'].pop()
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trajectory_map
def delete_last_step(tracking_points, first_frame_path):
tracking_points.constructor_args['value'][-1].pop()
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trajectory_map
def add_tracking_points(tracking_points, first_frame_path, evt: gr.SelectData): # SelectData is a subclass of EventData
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.constructor_args['value'][-1].append(evt.index)
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trajectory_map
with gr.Row():
with gr.Column(scale=1):
image_upload_button = gr.UploadButton(label="Upload Image",file_types=["image"])
add_drag_button = gr.Button(value="Add Drag")
reset_button = gr.Button(value="Reset")
run_button = gr.Button(value="Run")
delete_last_drag_button = gr.Button(value="Delete last drag")
delete_last_step_button = gr.Button(value="Delete last step")
with gr.Column(scale=7):
with gr.Row():
with gr.Column(scale=6):
input_image = gr.Image(label=None,
interactive=True,
height=320,
width=576,)
with gr.Column(scale=6):
output_image = gr.Image(label=None,
height=320,
width=576,)
with gr.Row():
with gr.Column(scale=1):
inference_batch_size = gr.Slider(label='Inference Batch Size',
minimum=1,
maximum=1,
step=1,
value=1)
motion_bucket_id = gr.Slider(label='Motion Bucket',
minimum=1,
maximum=100,
step=1,
value=4)
with gr.Column(scale=5):
output_video = gr.Image(label="Output Video",
height=320,
width=576,)
with gr.Row():
gr.Markdown("""
## Citation
```bibtex
@article{yin2023dragnuwa,
title={Dragnuwa: Fine-grained control in video generation by integrating text, image, and trajectory},
author={Yin, Shengming and Wu, Chenfei and Liang, Jian and Shi, Jie and Li, Houqiang and Ming, Gong and Duan, Nan},
journal={arXiv preprint arXiv:2308.08089},
year={2023}
}
```
""")
image_upload_button.upload(preprocess_image, image_upload_button, [input_image, first_frame_path, tracking_points])
add_drag_button.click(add_drag, tracking_points, tracking_points)
delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path], [tracking_points, input_image])
delete_last_step_button.click(delete_last_step, [tracking_points, first_frame_path], [tracking_points, input_image])
reset_button.click(reset_states, [first_frame_path, tracking_points], [first_frame_path, tracking_points])
input_image.select(add_tracking_points, [tracking_points, first_frame_path], [tracking_points, input_image])
run_button.click(DragNUWA_net.run, [first_frame_path, tracking_points, inference_batch_size, motion_bucket_id], [output_image, output_video])
demo.launch(server_name="0.0.0.0", debug=True)
|