import numpy as np import os from util import * import argparse def set_requires_grad(tensor_list): for tensor in tensor_list: tensor.requires_grad = True parser = argparse.ArgumentParser() parser.add_argument( "--path", type=str, default="", help="idname of target person") parser.add_argument('--img_h', type=int, default=512, help='height if image') parser.add_argument('--img_w', type=int, default=512, help='width of image') args = parser.parse_args() id_dir = args.path params_dict = torch.load(os.path.join(id_dir, 'track_params.pt')) euler_angle = params_dict['euler'].cuda() trans = params_dict['trans'].cuda() / 1000.0 focal_len = params_dict['focal'].cuda() track_xys = torch.as_tensor( np.load(os.path.join(id_dir, 'track_xys.npy'))).float().cuda() num_frames = track_xys.shape[0] point_num = track_xys.shape[1] pts = torch.zeros((point_num, 3), dtype=torch.float32).cuda() set_requires_grad([euler_angle, trans, pts]) cxy = torch.Tensor((args.img_w/2.0, args.img_h/2.0)).float().cuda() optimizer_pts = torch.optim.Adam([pts], lr=1e-2) iter_num = 500 for iter in range(iter_num): proj_pts = forward_transform(pts.unsqueeze(0).expand( num_frames, -1, -1), euler_angle, trans, focal_len, cxy) loss = cal_lan_loss(proj_pts[..., :2], track_xys) optimizer_pts.zero_grad() loss.backward() optimizer_pts.step() optimizer_ba = torch.optim.Adam([pts, euler_angle, trans], lr=1e-4) iter_num = 8000 for iter in range(iter_num): proj_pts = forward_transform(pts.unsqueeze(0).expand( num_frames, -1, -1), euler_angle, trans, focal_len, cxy) loss_lan = cal_lan_loss(proj_pts[..., :2], track_xys) loss = loss_lan optimizer_ba.zero_grad() loss.backward() optimizer_ba.step() torch.save({'euler': euler_angle.detach().cpu(), 'trans': trans.detach().cpu(), 'focal': focal_len.detach().cpu()}, os.path.join(id_dir, 'bundle_adjustment.pt')) print('bundle adjustment params saved')