import torch import torch.nn as nn import torch.nn.functional as F from nnutils import make_conv_2d, make_upscale_2d, make_downscale_2d, ResBlock2d, Identity class FlowHead(nn.Module): def __init__(self, input_dim=128, hidden_dim=256): super(FlowHead, self).__init__() self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.relu(self.conv1(x)) return self.conv2(x), x class ConvGRU(nn.Module): def __init__(self, hidden_dim=128, input_dim=192+128): super(ConvGRU, self).__init__() self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) def forward(self, h, x): hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz(hx)) r = torch.sigmoid(self.convr(hx)) q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q return h class SepConvGRU(nn.Module): def __init__(self, hidden_dim=128, input_dim=192+128): super(SepConvGRU, self).__init__() self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) def forward(self, h, x): # horizontal hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz1(hx)) r = torch.sigmoid(self.convr1(hx)) q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q # vertical hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz2(hx)) r = torch.sigmoid(self.convr2(hx)) q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) h = (1-z) * h + z * q return h class SmallMotionEncoder(nn.Module): def __init__(self, args): super(SmallMotionEncoder, self).__init__() cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0) self.convf1 = nn.Conv2d(2, 64, 7, padding=3) self.convf2 = nn.Conv2d(64, 32, 3, padding=1) self.conv = nn.Conv2d(128, 80, 3, padding=1) def forward(self, flow, corr): cor = F.relu(self.convc1(corr)) flo = F.relu(self.convf1(flow)) flo = F.relu(self.convf2(flo)) cor_flo = torch.cat([cor, flo], dim=1) out = F.relu(self.conv(cor_flo)) return torch.cat([out, flow], dim=1) class BasicMotionEncoder(nn.Module): def __init__(self, args): super(BasicMotionEncoder, self).__init__() cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2 self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0) self.convc2 = nn.Conv2d(256, 192, 3, padding=1) self.convf1 = nn.Conv2d(2, 128, 7, padding=3) self.convf2 = nn.Conv2d(128, 64, 3, padding=1) self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1) def forward(self, flow, corr): cor = F.relu(self.convc1(corr)) cor = F.relu(self.convc2(cor)) flo = F.relu(self.convf1(flow)) flo = F.relu(self.convf2(flo)) cor_flo = torch.cat([cor, flo], dim=1) out = F.relu(self.conv(cor_flo)) return torch.cat([out, flow], dim=1) class SmallUpdateBlock(nn.Module): def __init__(self, args, hidden_dim=96): super(SmallUpdateBlock, self).__init__() self.encoder = SmallMotionEncoder(args) self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64) self.flow_head = FlowHead(hidden_dim, hidden_dim=128) def forward(self, net, inp, corr, flow): motion_features = self.encoder(flow, corr) inp = torch.cat([inp, motion_features], dim=1) net = self.gru(net, inp) delta_flow, feature = self.flow_head(net) return net, None, delta_flow, feature class BasicUpdateBlock(nn.Module): def __init__(self, args, hidden_dim=128, input_dim=128): super(BasicUpdateBlock, self).__init__() self.args = args self.encoder = BasicMotionEncoder(args) self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim) self.flow_head = FlowHead(hidden_dim, hidden_dim=256) self.mask = nn.Sequential( nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 64*9, 1, padding=0)) def forward(self, net, inp, corr, flow, upsample=True): motion_features = self.encoder(flow, corr) inp = torch.cat([inp, motion_features], dim=1) net = self.gru(net, inp) delta_flow, feature = self.flow_head(net) # scale mask to balence gradients mask = .25 * self.mask(net) return net, mask, delta_flow, feature class BasicWeightsNet(nn.Module): def __init__(self, opt): super(BasicUpdateBlock, self).__init__() if opt.small: in_dim = 128 else: in_dim = 256 fn_0 = 16 self.input_fn = fn_0 + 2 fn_1 = 16 self.conv1 = torch.nn.Conv2d(in_channels=in_dim, out_channels=fn_0, kernel_size=3, stride=1, padding=1) if opt.use_batch_norm: custom_batch_norm = torch.nn.BatchNorm2d else: custom_batch_norm = Identity self.model = nn.Sequential( make_conv_2d(self.input_fn, fn_1, n_blocks=1, normalization=custom_batch_norm), ResBlock2d(fn_1, normalization=custom_batch_norm), ResBlock2d(fn_1, normalization=custom_batch_norm), ResBlock2d(fn_1, normalization=custom_batch_norm), nn.Conv2d(fn_1, 1, kernel_size=3, padding=1), torch.nn.Sigmoid() ) def forward(self, flow, feature): features = self.conv1(features) x = torch.cat([features, flow], 1) return self.model(x)