import torch import torch.nn as nn import numpy as np import os class Face_3DMM(nn.Module): def __init__(self, modelpath, id_dim, exp_dim, tex_dim, point_num): super(Face_3DMM, self).__init__() # id_dim = 100 # exp_dim = 79 # tex_dim = 100 self.point_num = point_num DMM_info = np.load( os.path.join(modelpath, "3DMM_info.npy"), allow_pickle=True ).item() base_id = DMM_info["b_shape"][:id_dim, :] mu_id = DMM_info["mu_shape"] base_exp = DMM_info["b_exp"][:exp_dim, :] mu_exp = DMM_info["mu_exp"] mu = mu_id + mu_exp mu = mu.reshape(-1, 3) for i in range(3): mu[:, i] -= np.mean(mu[:, i]) mu = mu.reshape(-1) self.base_id = torch.as_tensor(base_id).cuda() /1000.0 self.base_exp = torch.as_tensor(base_exp).cuda() /1000.0 self.mu = torch.as_tensor(mu).cuda() /1000.0 base_tex = DMM_info["b_tex"][:tex_dim, :] mu_tex = DMM_info["mu_tex"] self.base_tex = torch.as_tensor(base_tex).cuda() self.mu_tex = torch.as_tensor(mu_tex).cuda() sig_id = DMM_info["sig_shape"][:id_dim] sig_tex = DMM_info["sig_tex"][:tex_dim] sig_exp = DMM_info["sig_exp"][:exp_dim] self.sig_id = torch.as_tensor(sig_id).cuda() self.sig_tex = torch.as_tensor(sig_tex).cuda() self.sig_exp = torch.as_tensor(sig_exp).cuda() def forward_geo_sub(self, id_para, exp_para, sub_index): id_para = id_para*self.sig_id exp_para = exp_para*self.sig_exp sel_index = torch.cat((3*sub_index.unsqueeze(1), 3*sub_index.unsqueeze(1)+1, 3*sub_index.unsqueeze(1)+2), dim=1).reshape(-1) geometry = torch.mm(id_para, self.base_id[:, sel_index]) + \ torch.mm(exp_para, self.base_exp[:, sel_index]) + self.mu[sel_index] return geometry.reshape(-1, sub_index.shape[0], 3) def forward_geo(self, id_para, exp_para): id_para = id_para*self.sig_id exp_para = exp_para*self.sig_exp geometry = torch.mm(id_para, self.base_id) + \ torch.mm(exp_para, self.base_exp) + self.mu return geometry.reshape(-1, self.point_num, 3) def forward_tex(self, tex_para): tex_para = tex_para*self.sig_tex texture = torch.mm(tex_para, self.base_tex) + self.mu_tex return texture.reshape(-1, self.point_num, 3)