|
import torch.utils.data as data |
|
from PIL import Image |
|
import torchvision.transforms as transforms |
|
|
|
|
|
class BaseDataset(data.Dataset): |
|
def __init__(self): |
|
super(BaseDataset, self).__init__() |
|
|
|
def name(self): |
|
return 'BaseDataset' |
|
|
|
def initialize(self, opt): |
|
pass |
|
|
|
def __len__(self): |
|
return 0 |
|
|
|
|
|
def get_transform(opt): |
|
transform_list = [] |
|
if opt.resize_or_crop == 'resize_and_crop': |
|
osize = [opt.loadSize, opt.loadSize] |
|
transform_list.append(transforms.Resize(osize, Image.BICUBIC)) |
|
transform_list.append(transforms.RandomCrop(opt.fineSize)) |
|
elif opt.resize_or_crop == 'crop': |
|
transform_list.append(transforms.RandomCrop(opt.fineSize)) |
|
elif opt.resize_or_crop == 'scale_width': |
|
transform_list.append(transforms.Lambda( |
|
lambda img: __scale_width(img, opt.fineSize))) |
|
elif opt.resize_or_crop == 'scale_width_and_crop': |
|
transform_list.append(transforms.Lambda( |
|
lambda img: __scale_width(img, opt.loadSize))) |
|
transform_list.append(transforms.RandomCrop(opt.fineSize)) |
|
elif opt.resize_or_crop == 'none': |
|
transform_list.append(transforms.Lambda( |
|
lambda img: __adjust(img))) |
|
else: |
|
raise ValueError('--resize_or_crop %s is not a valid option.' % opt.resize_or_crop) |
|
|
|
if opt.isTrain and not opt.no_flip: |
|
transform_list.append(transforms.RandomHorizontalFlip()) |
|
|
|
transform_list += [transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), |
|
(0.5, 0.5, 0.5))] |
|
return transforms.Compose(transform_list) |
|
|
|
|
|
|
|
def __adjust(img): |
|
ow, oh = img.size |
|
|
|
|
|
|
|
|
|
mult = 4 |
|
if ow % mult == 0 and oh % mult == 0: |
|
return img |
|
w = (ow - 1) // mult |
|
w = (w + 1) * mult |
|
h = (oh - 1) // mult |
|
h = (h + 1) * mult |
|
|
|
if ow != w or oh != h: |
|
__print_size_warning(ow, oh, w, h) |
|
|
|
return img.resize((w, h), Image.BICUBIC) |
|
|
|
|
|
def __scale_width(img, target_width): |
|
ow, oh = img.size |
|
|
|
|
|
|
|
|
|
mult = 4 |
|
assert target_width % mult == 0, "the target width needs to be multiple of %d." % mult |
|
if (ow == target_width and oh % mult == 0): |
|
return img |
|
w = target_width |
|
target_height = int(target_width * oh / ow) |
|
m = (target_height - 1) // mult |
|
h = (m + 1) * mult |
|
|
|
if target_height != h: |
|
__print_size_warning(target_width, target_height, w, h) |
|
|
|
return img.resize((w, h), Image.BICUBIC) |
|
|
|
|
|
def __print_size_warning(ow, oh, w, h): |
|
if not hasattr(__print_size_warning, 'has_printed'): |
|
print("The image size needs to be a multiple of 4. " |
|
"The loaded image size was (%d, %d), so it was adjusted to " |
|
"(%d, %d). This adjustment will be done to all images " |
|
"whose sizes are not multiples of 4" % (ow, oh, w, h)) |
|
__print_size_warning.has_printed = True |